Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2015-02-24 |
Revision: | 600 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are regular hexagons.
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | monohex | 1 | 1 | 1 | 1 | 1 | 1 |
2 | dihex | 1 | 2 | 3 | 1 | 2 | 3 |
3 | trihex | 3 | 9 | 12 | 3 | 9 | 12 |
4 | tetrahex | 7 | 28 | 40 | 10 | 40 | 52 |
5 | pentahex | 22 | 110 | 150 | 33 | 165 | 217 |
6* | hexahex | 82 | 492 | 642 | 147 | 882 | 1099 |
7* | heptahex | 333 | 620 | ||||
8* | octahex | 1448 | 2821 |
"*" indicates that pieces with holes exist. E.g. one hexahex contains a central hole (1 hexagon).
Triangles:
T(n) = n(n + 1)/2
Hexagons:
H(n) = 3n(n - 1) + 1
Hexagrams:
Hg(n) = H(n) + 6T(n-1) = 6n² - 6n + 1
n | T | H | Hg |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 3 | 7 | 13 |
3 | 6 | 19 | 37 |
4 | 10 | 37 | 73 |
5 | 15 | 61 | 121 |
6 | 21 | 91 | 181 |
7 | 28 | 127 | 253 |
8 | 36 | 169 | 337 |
9 | 45 | 217 | 433 |
10 | 55 | 271 | 541 |
11 | 66 | 331 | 661 |
12 | 78 | 397 | 793 |
13 | 91 | 469 | 937 |
14 | 105 | 547 | 1093 |
15 | 120 | 631 | 1261 |
16 | 136 | 721 | 1441 |
17 | 153 | 817 | 1633 |
18 | 171 | 919 | 1837 |
19 | 190 | 1027 | 2053 |
20 | 210 | 1141 | 2281 |
21 | 231 | 1261 | 2521 |
22 | 253 | 1387 | 2773 |
23 | 276 | 1519 | 3037 |
24 | 300 | 1657 | 3313 |
25 | 325 | 1801 | 3601 |
26 | 351 | 1951 | 3901 |
27 | 378 | 2107 | 4213 |
28 | 406 | 2269 | 4537 |
29 | 435 | 2437 | 4873 |
30 | 465 | 2611 | 5221 |
31 | 496 | 2791 | 5581 |
32 | 528 | 2977 | 5953 |
33 | 561 | 3169 | 6337 |
34 | 595 | 3367 | 6733 |
35 | 630 | 3571 | 7141 |
36 | 666 | 3781 | 7561 |
37 | 703 | 3997 | 7993 |
38 | 741 | 4219 | 8437 |
39 | 780 | 4447 | 8893 |
40 | 820 | 4681 | 9361 |
Parallelograms & Staggered Rectangles:
P(m,n) = m * n Rs(m,n) = P(m,n)
P | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | ... | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
3 | ... | ... | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 |
4 | ... | ... | ... | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
5 | ... | ... | ... | ... | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
6 | ... | ... | ... | ... | ... | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 |
7 | ... | ... | ... | ... | ... | ... | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 |
8 | ... | ... | ... | ... | ... | ... | ... | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 81 | 90 | 99 | 108 | 117 | 126 | 135 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 100 | 110 | 120 | 130 | 140 | 150 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 121 | 132 | 143 | 154 | 165 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 144 | 156 | 168 | 180 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 169 | 182 | 195 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 196 | 210 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 225 |
P | m=16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
2 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 |
3 | 48 | 51 | 54 | 57 | 60 | 63 | 66 | 69 | 72 | 75 | 78 | 81 | 84 | 87 | 90 |
4 | 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92 | 96 | 100 | 104 | 108 | 112 | 116 | 120 |
5 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 |
6 | 96 | 102 | 108 | 114 | 120 | 126 | 132 | 138 | 144 | 150 | 156 | 162 | 168 | 174 | 180 |
7 | 112 | 119 | 126 | 133 | 140 | 147 | 154 | 161 | 168 | 175 | 182 | 189 | 196 | 203 | 210 |
8 | 128 | 136 | 144 | 152 | 160 | 168 | 176 | 184 | 192 | 200 | 208 | 216 | 224 | 232 | 240 |
9 | 144 | 153 | 162 | 171 | 180 | 189 | 198 | 207 | 216 | 225 | 234 | 243 | 252 | 261 | 270 |
10 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
11 | 176 | 187 | 198 | 209 | 220 | 231 | 242 | 253 | 264 | 275 | 286 | 297 | 308 | 319 | 330 |
12 | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 | 288 | 300 | 312 | 324 | 336 | 348 | 360 |
13 | 208 | 221 | 234 | 247 | 260 | 273 | 286 | 299 | 312 | 325 | 338 | 351 | 364 | 377 | 390 |
14 | 224 | 238 | 252 | 266 | 280 | 294 | 308 | 322 | 336 | 350 | 364 | 378 | 392 | 406 | 420 |
15 | 240 | 255 | 270 | 285 | 300 | 315 | 330 | 345 | 360 | 375 | 390 | 405 | 420 | 435 | 450 |
P | m=16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=16 | 256 | 272 | 288 | 304 | 320 | 336 | 352 | 368 | 384 | 400 | 416 | 432 | 448 | 464 | 480 |
17 | ... | 289 | 306 | 323 | 340 | 357 | 374 | 391 | 408 | 425 | 442 | 459 | 476 | 493 | 510 |
18 | ... | ... | 324 | 342 | 360 | 378 | 396 | 414 | 432 | 450 | 468 | 486 | 504 | 522 | 540 |
19 | ... | ... | ... | 361 | 380 | 399 | 418 | 437 | 456 | 475 | 494 | 513 | 532 | 551 | 570 |
20 | ... | ... | ... | ... | 400 | 420 | 440 | 460 | 480 | 500 | 520 | 540 | 560 | 580 | 600 |
21 | ... | ... | ... | ... | ... | 441 | 462 | 483 | 504 | 525 | 546 | 567 | 588 | 609 | 630 |
22 | ... | ... | ... | ... | ... | ... | 484 | 506 | 528 | 550 | 572 | 594 | 616 | 638 | 660 |
23 | ... | ... | ... | ... | ... | ... | ... | 529 | 552 | 575 | 598 | 621 | 644 | 667 | 690 |
24 | ... | ... | ... | ... | ... | ... | ... | ... | 576 | 600 | 624 | 648 | 672 | 696 | 720 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 625 | 650 | 675 | 700 | 725 | 750 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 676 | 702 | 728 | 754 | 780 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 729 | 756 | 783 | 810 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 784 | 812 | 840 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 841 | 870 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 900 |
Inset Rectangles:
Ri(m,n) = P(m,n) - int(m/2)
Ri | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | 17 | 18 | 20 | 21 | 23 | 24 |
3 | ... | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | 28 | 30 | 33 | 35 | 38 | 40 |
4 | ... | ... | 14 | 18 | 21 | 25 | 28 | 32 | 35 | 39 | 42 | 46 | 49 | 53 | 56 |
5 | ... | ... | ... | 23 | 27 | 32 | 36 | 41 | 45 | 50 | 54 | 59 | 63 | 68 | 72 |
6 | ... | ... | ... | ... | 33 | 39 | 44 | 50 | 55 | 61 | 66 | 72 | 77 | 83 | 88 |
7 | ... | ... | ... | ... | ... | 46 | 52 | 59 | 65 | 72 | 78 | 85 | 91 | 98 | 104 |
8 | ... | ... | ... | ... | ... | ... | 60 | 68 | 75 | 83 | 90 | 98 | 105 | 113 | 120 |
9 | ... | ... | ... | ... | ... | ... | ... | 77 | 85 | 94 | 102 | 111 | 119 | 128 | 136 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 95 | 105 | 114 | 124 | 133 | 143 | 152 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 116 | 126 | 137 | 147 | 158 | 168 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 138 | 150 | 161 | 173 | 184 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 163 | 175 | 188 | 200 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 189 | 203 | 216 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 218 | 232 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 248 |
Ri | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 26 | 27 | 29 | 30 | 32 | 33 | 35 | 36 | 38 | 39 | 41 | 42 | 44 | 45 | 47 |
3 | 43 | 45 | 48 | 50 | 53 | 55 | 58 | 60 | 63 | 65 | 68 | 70 | 73 | 75 | 78 |
4 | 60 | 63 | 67 | 70 | 74 | 77 | 81 | 84 | 88 | 91 | 95 | 98 | 102 | 105 | 109 |
5 | 77 | 81 | 86 | 90 | 95 | 99 | 104 | 108 | 113 | 117 | 122 | 126 | 131 | 135 | 140 |
6 | 94 | 99 | 105 | 110 | 116 | 121 | 127 | 132 | 138 | 143 | 149 | 154 | 160 | 165 | 171 |
7 | 111 | 117 | 124 | 130 | 137 | 143 | 150 | 156 | 163 | 169 | 176 | 182 | 189 | 195 | 202 |
8 | 128 | 135 | 143 | 150 | 158 | 165 | 173 | 180 | 188 | 195 | 203 | 210 | 218 | 225 | 233 |
9 | 145 | 153 | 162 | 170 | 179 | 187 | 196 | 204 | 213 | 221 | 230 | 238 | 247 | 255 | 264 |
10 | 162 | 171 | 181 | 190 | 200 | 209 | 219 | 228 | 238 | 247 | 257 | 266 | 276 | 285 | 295 |
11 | 179 | 189 | 200 | 210 | 221 | 231 | 242 | 252 | 263 | 273 | 284 | 294 | 305 | 315 | 326 |
12 | 196 | 207 | 219 | 230 | 242 | 253 | 265 | 276 | 288 | 299 | 311 | 322 | 334 | 345 | 357 |
13 | 213 | 225 | 238 | 250 | 263 | 275 | 288 | 300 | 313 | 325 | 338 | 350 | 363 | 375 | 388 |
14 | 230 | 243 | 257 | 270 | 284 | 297 | 311 | 324 | 338 | 351 | 365 | 378 | 392 | 405 | 419 |
15 | 247 | 261 | 276 | 290 | 305 | 319 | 334 | 348 | 363 | 377 | 392 | 406 | 421 | 435 | 450 |
16 | 264 | 279 | 295 | 310 | 326 | 341 | 357 | 372 | 388 | 403 | 419 | 434 | 450 | 465 | 481 |
Ri | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=17 | 281 | 297 | 314 | 330 | 347 | 363 | 380 | 396 | 413 | 429 | 446 | 462 | 479 | 495 | 512 |
18 | ... | 315 | 333 | 350 | 368 | 385 | 403 | 420 | 438 | 455 | 473 | 490 | 508 | 525 | 543 |
19 | ... | ... | 352 | 370 | 389 | 407 | 426 | 444 | 463 | 481 | 500 | 518 | 537 | 555 | 574 |
20 | ... | ... | ... | 390 | 410 | 429 | 449 | 468 | 488 | 507 | 527 | 546 | 566 | 585 | 605 |
21 | ... | ... | ... | ... | 431 | 451 | 472 | 492 | 513 | 533 | 554 | 574 | 595 | 615 | 636 |
22 | ... | ... | ... | ... | ... | 473 | 495 | 516 | 538 | 559 | 581 | 602 | 624 | 645 | 667 |
23 | ... | ... | ... | ... | ... | ... | 518 | 540 | 563 | 585 | 608 | 630 | 653 | 675 | 698 |
24 | ... | ... | ... | ... | ... | ... | ... | 564 | 588 | 611 | 635 | 658 | 682 | 705 | 729 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | 613 | 637 | 662 | 686 | 711 | 735 | 760 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 663 | 689 | 714 | 740 | 765 | 791 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 716 | 742 | 769 | 795 | 822 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 770 | 798 | 825 | 853 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 827 | 855 | 884 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 885 | 915 |
31 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 946 |
Rounded Rectangles:
Rr(m,n) = Ri(m,n) - (m % 2)
Rr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 21 | 22 | 24 |
3 | ... | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | 27 | 30 | 32 | 35 | 37 | 40 |
4 | ... | ... | 14 | 17 | 21 | 24 | 28 | 31 | 35 | 38 | 42 | 45 | 49 | 52 | 56 |
5 | ... | ... | ... | 22 | 27 | 31 | 36 | 40 | 45 | 49 | 54 | 58 | 63 | 67 | 72 |
6 | ... | ... | ... | ... | 33 | 38 | 44 | 49 | 55 | 60 | 66 | 71 | 77 | 82 | 88 |
7 | ... | ... | ... | ... | ... | 45 | 52 | 58 | 65 | 71 | 78 | 84 | 91 | 97 | 104 |
8 | ... | ... | ... | ... | ... | ... | 60 | 67 | 75 | 82 | 90 | 97 | 105 | 112 | 120 |
9 | ... | ... | ... | ... | ... | ... | ... | 76 | 85 | 93 | 102 | 110 | 119 | 127 | 136 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 95 | 104 | 114 | 123 | 133 | 142 | 152 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 115 | 126 | 136 | 147 | 157 | 168 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 138 | 149 | 161 | 172 | 184 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 162 | 175 | 187 | 200 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 189 | 202 | 216 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 217 | 232 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 248 |
Rr | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 25 | 27 | 28 | 30 | 31 | 33 | 34 | 36 | 37 | 39 | 40 | 42 | 43 | 45 | 46 |
3 | 42 | 45 | 47 | 50 | 52 | 55 | 57 | 60 | 62 | 65 | 67 | 70 | 72 | 75 | 77 |
4 | 59 | 63 | 66 | 70 | 73 | 77 | 80 | 84 | 87 | 91 | 94 | 98 | 101 | 105 | 108 |
5 | 76 | 81 | 85 | 90 | 94 | 99 | 103 | 108 | 112 | 117 | 121 | 126 | 130 | 135 | 139 |
6 | 93 | 99 | 104 | 110 | 115 | 121 | 126 | 132 | 137 | 143 | 148 | 154 | 159 | 165 | 170 |
7 | 110 | 117 | 123 | 130 | 136 | 143 | 149 | 156 | 162 | 169 | 175 | 182 | 188 | 195 | 201 |
8 | 127 | 135 | 142 | 150 | 157 | 165 | 172 | 180 | 187 | 195 | 202 | 210 | 217 | 225 | 232 |
9 | 144 | 153 | 161 | 170 | 178 | 187 | 195 | 204 | 212 | 221 | 229 | 238 | 246 | 255 | 263 |
10 | 161 | 171 | 180 | 190 | 199 | 209 | 218 | 228 | 237 | 247 | 256 | 266 | 275 | 285 | 294 |
11 | 178 | 189 | 199 | 210 | 220 | 231 | 241 | 252 | 262 | 273 | 283 | 294 | 304 | 315 | 325 |
12 | 195 | 207 | 218 | 230 | 241 | 253 | 264 | 276 | 287 | 299 | 310 | 322 | 333 | 345 | 356 |
13 | 212 | 225 | 237 | 250 | 262 | 275 | 287 | 300 | 312 | 325 | 337 | 350 | 362 | 375 | 387 |
14 | 229 | 243 | 256 | 270 | 283 | 297 | 310 | 324 | 337 | 351 | 364 | 378 | 391 | 405 | 418 |
15 | 246 | 261 | 275 | 290 | 304 | 319 | 333 | 348 | 362 | 377 | 391 | 406 | 420 | 435 | 449 |
16 | 263 | 279 | 294 | 310 | 325 | 341 | 356 | 372 | 387 | 403 | 418 | 434 | 449 | 465 | 480 |
Rr | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=17 | 280 | 297 | 313 | 330 | 346 | 363 | 379 | 396 | 412 | 429 | 445 | 462 | 478 | 495 | 511 |
18 | ... | 315 | 332 | 350 | 367 | 385 | 402 | 420 | 437 | 455 | 472 | 490 | 507 | 525 | 542 |
19 | ... | ... | 351 | 370 | 388 | 407 | 425 | 444 | 462 | 481 | 499 | 518 | 536 | 555 | 573 |
20 | ... | ... | ... | 390 | 409 | 429 | 448 | 468 | 487 | 507 | 526 | 546 | 565 | 585 | 604 |
21 | ... | ... | ... | ... | 430 | 451 | 471 | 492 | 512 | 533 | 553 | 574 | 594 | 615 | 635 |
22 | ... | ... | ... | ... | ... | 473 | 494 | 516 | 537 | 559 | 580 | 602 | 623 | 645 | 666 |
23 | ... | ... | ... | ... | ... | ... | 517 | 540 | 562 | 585 | 607 | 630 | 652 | 675 | 697 |
24 | ... | ... | ... | ... | ... | ... | ... | 564 | 587 | 611 | 634 | 658 | 681 | 705 | 728 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | 612 | 637 | 661 | 686 | 710 | 735 | 759 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 663 | 688 | 714 | 739 | 765 | 790 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 715 | 742 | 768 | 795 | 821 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 770 | 797 | 825 | 852 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 826 | 855 | 883 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 885 | 914 |
31 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 945 |
Trapezoids:
Tr(m,n) = T(m) - T(m - n) n/2(2m - n + 1)
Tr | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 |
3 | ... | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 |
4 | ... | ... | 14 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 62 |
5 | ... | ... | ... | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
6 | ... | ... | ... | ... | 27 | 33 | 39 | 45 | 51 | 57 | 63 | 69 | 75 | 81 | 87 |
7 | ... | ... | ... | ... | ... | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 |
8 | ... | ... | ... | ... | ... | ... | 44 | 52 | 60 | 68 | 76 | 84 | 92 | 100 | 108 |
9 | ... | ... | ... | ... | ... | ... | ... | 54 | 63 | 72 | 81 | 90 | 99 | 108 | 117 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 65 | 75 | 85 | 95 | 105 | 115 | 125 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 77 | 88 | 99 | 110 | 121 | 132 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 90 | 102 | 114 | 126 | 138 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 104 | 117 | 130 | 143 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 119 | 133 | 147 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 135 | 150 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 152 |
Tr | m=18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 |
3 | 51 | 54 | 57 | 60 | 63 | 66 | 69 | 72 | 75 | 78 | 81 | 84 | 87 | 90 | 93 |
4 | 66 | 70 | 74 | 78 | 82 | 86 | 90 | 94 | 98 | 102 | 106 | 110 | 114 | 118 | 122 |
5 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 |
6 | 93 | 99 | 105 | 111 | 117 | 123 | 129 | 135 | 141 | 147 | 153 | 159 | 165 | 171 | 177 |
7 | 105 | 112 | 119 | 126 | 133 | 140 | 147 | 154 | 161 | 168 | 175 | 182 | 189 | 196 | 203 |
8 | 116 | 124 | 132 | 140 | 148 | 156 | 164 | 172 | 180 | 188 | 196 | 204 | 212 | 220 | 228 |
9 | 126 | 135 | 144 | 153 | 162 | 171 | 180 | 189 | 198 | 207 | 216 | 225 | 234 | 243 | 252 |
10 | 135 | 145 | 155 | 165 | 175 | 185 | 195 | 205 | 215 | 225 | 235 | 245 | 255 | 265 | 275 |
11 | 143 | 154 | 165 | 176 | 187 | 198 | 209 | 220 | 231 | 242 | 253 | 264 | 275 | 286 | 297 |
12 | 150 | 162 | 174 | 186 | 198 | 210 | 222 | 234 | 246 | 258 | 270 | 282 | 294 | 306 | 318 |
13 | 156 | 169 | 182 | 195 | 208 | 221 | 234 | 247 | 260 | 273 | 286 | 299 | 312 | 325 | 338 |
14 | 161 | 175 | 189 | 203 | 217 | 231 | 245 | 259 | 273 | 287 | 301 | 315 | 329 | 343 | 357 |
15 | 165 | 180 | 195 | 210 | 225 | 240 | 255 | 270 | 285 | 300 | 315 | 330 | 345 | 360 | 375 |
16 | 168 | 184 | 200 | 216 | 232 | 248 | 264 | 280 | 296 | 312 | 328 | 344 | 360 | 376 | 392 |
Tr | m=18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=17 | 170 | 187 | 204 | 221 | 238 | 255 | 272 | 289 | 306 | 323 | 340 | 357 | 374 | 391 | 408 |
18 | ... | 189 | 207 | 225 | 243 | 261 | 279 | 297 | 315 | 333 | 351 | 369 | 387 | 405 | 423 |
19 | ... | ... | 209 | 228 | 247 | 266 | 285 | 304 | 323 | 342 | 361 | 380 | 399 | 418 | 437 |
20 | ... | ... | ... | 230 | 250 | 270 | 290 | 310 | 330 | 350 | 370 | 390 | 410 | 430 | 450 |
21 | ... | ... | ... | ... | 252 | 273 | 294 | 315 | 336 | 357 | 378 | 399 | 420 | 441 | 462 |
22 | ... | ... | ... | ... | ... | 275 | 297 | 319 | 341 | 363 | 385 | 407 | 429 | 451 | 473 |
23 | ... | ... | ... | ... | ... | ... | 299 | 322 | 345 | 368 | 391 | 414 | 437 | 460 | 483 |
24 | ... | ... | ... | ... | ... | ... | ... | 324 | 348 | 372 | 396 | 420 | 444 | 468 | 492 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | 350 | 375 | 400 | 425 | 450 | 475 | 500 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 377 | 403 | 429 | 455 | 481 | 507 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 405 | 432 | 459 | 486 | 513 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 434 | 462 | 490 | 518 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 464 | 493 | 522 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 495 | 525 |
31 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 527 |
Elongated Hexagons:
He(m,n) = H(n) + (m - n)(2n - 1)
He | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 7 | 10 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | 34 | 37 | 40 | 43 | 46 | 49 |
3 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 69 | 74 | 79 | 84 |
4 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 | 107 | 114 | 121 |
5 | 34 | 43 | 52 | 61 | 70 | 79 | 88 | 97 | 106 | 115 | 124 | 133 | 142 | 151 | 160 |
6 | 47 | 58 | 69 | 80 | 91 | 102 | 113 | 124 | 135 | 146 | 157 | 168 | 179 | 190 | 201 |
7 | 62 | 75 | 88 | 101 | 114 | 127 | 140 | 153 | 166 | 179 | 192 | 205 | 218 | 231 | 244 |
8 | 79 | 94 | 109 | 124 | 139 | 154 | 169 | 184 | 199 | 214 | 229 | 244 | 259 | 274 | 289 |
9 | 98 | 115 | 132 | 149 | 166 | 183 | 200 | 217 | 234 | 251 | 268 | 285 | 302 | 319 | 336 |
10 | 119 | 138 | 157 | 176 | 195 | 214 | 233 | 252 | 271 | 290 | 309 | 328 | 347 | 366 | 385 |
11 | 142 | 163 | 184 | 205 | 226 | 247 | 268 | 289 | 310 | 331 | 352 | 373 | 394 | 415 | 436 |
12 | 167 | 190 | 213 | 236 | 259 | 282 | 305 | 328 | 351 | 374 | 397 | 420 | 443 | 466 | 489 |
13 | 194 | 219 | 244 | 269 | 294 | 319 | 344 | 369 | 394 | 419 | 444 | 469 | 494 | 519 | 544 |
14 | 223 | 250 | 277 | 304 | 331 | 358 | 385 | 412 | 439 | 466 | 493 | 520 | 547 | 574 | 601 |
15 | 254 | 283 | 312 | 341 | 370 | 399 | 428 | 457 | 486 | 515 | 544 | 573 | 602 | 631 | 660 |
16 | 287 | 318 | 349 | 380 | 411 | 442 | 473 | 504 | 535 | 566 | 597 | 628 | 659 | 690 | 721 |
Semi-regular Hexagons:
Hs(m,n) = T(m + 2n - 2) - 3T(n - 1)
Hs | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 12 | 18 | 25 | 33 | 42 | 52 | 63 | 75 | 88 | 102 | 117 | 133 | 150 | 168 | 187 |
3 | ... | 27 | 36 | 46 | 57 | 69 | 82 | 96 | 111 | 127 | 144 | 162 | 181 | 201 | 222 |
4 | ... | ... | 48 | 60 | 73 | 87 | 102 | 118 | 135 | 153 | 172 | 192 | 213 | 235 | 258 |
5 | ... | ... | ... | 75 | 90 | 106 | 123 | 141 | 160 | 180 | 201 | 223 | 246 | 270 | 295 |
6 | ... | ... | ... | ... | 108 | 126 | 145 | 165 | 186 | 208 | 231 | 255 | 280 | 306 | 333 |
7 | ... | ... | ... | ... | ... | 147 | 168 | 190 | 213 | 237 | 262 | 288 | 315 | 343 | 372 |
8 | ... | ... | ... | ... | ... | ... | 192 | 216 | 241 | 267 | 294 | 322 | 351 | 381 | 412 |
9 | ... | ... | ... | ... | ... | ... | ... | 243 | 270 | 298 | 327 | 357 | 388 | 420 | 453 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 300 | 330 | 361 | 393 | 426 | 460 | 495 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 363 | 396 | 430 | 465 | 501 | 538 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 432 | 468 | 505 | 543 | 582 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 507 | 546 | 586 | 627 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 588 | 630 | 673 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 675 | 720 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 768 |
Chevrons:
C(m,n) = P(m, (2n - 1))
C | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 |
3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
4 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 |
5 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 | 117 | 126 | 135 |
6 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 | 143 | 154 | 165 |
7 | 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 | 130 | 143 | 156 | 169 | 182 | 195 |
8 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 | 225 |
9 | 17 | 34 | 51 | 68 | 85 | 102 | 119 | 136 | 153 | 170 | 187 | 204 | 221 | 238 | 255 |
10 | 19 | 38 | 57 | 76 | 95 | 114 | 133 | 152 | 171 | 190 | 209 | 228 | 247 | 266 | 285 |
11 | 21 | 42 | 63 | 84 | 105 | 126 | 147 | 168 | 189 | 210 | 231 | 252 | 273 | 294 | 315 |
12 | 23 | 46 | 69 | 92 | 115 | 138 | 161 | 184 | 207 | 230 | 253 | 276 | 299 | 322 | 345 |
13 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 | 350 | 375 |
14 | 27 | 54 | 81 | 108 | 135 | 162 | 189 | 216 | 243 | 270 | 297 | 324 | 351 | 378 | 405 |
15 | 29 | 58 | 87 | 116 | 145 | 174 | 203 | 232 | 261 | 290 | 319 | 348 | 377 | 406 | 435 |
16 | 31 | 62 | 93 | 124 | 155 | 186 | 217 | 248 | 279 | 310 | 341 | 372 | 403 | 434 | 465 |
Butterflies:
B(m,n) = C(m,n) - (n - 1)²
B | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 5 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 32 | 35 | 38 | 41 | 44 | 47 |
3 | ... | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 |
4 | ... | ... | 19 | 26 | 33 | 40 | 47 | 54 | 61 | 68 | 75 | 82 | 89 | 96 | 103 |
5 | ... | ... | ... | 29 | 38 | 47 | 56 | 65 | 74 | 83 | 92 | 101 | 110 | 119 | 128 |
6 | ... | ... | ... | ... | 41 | 52 | 63 | 74 | 85 | 96 | 107 | 118 | 129 | 140 | 151 |
7 | ... | ... | ... | ... | ... | 55 | 68 | 81 | 94 | 107 | 120 | 133 | 146 | 159 | 172 |
8 | ... | ... | ... | ... | ... | ... | 71 | 86 | 101 | 116 | 131 | 146 | 161 | 176 | 191 |
9 | ... | ... | ... | ... | ... | ... | ... | 89 | 106 | 123 | 140 | 157 | 174 | 191 | 208 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 109 | 128 | 147 | 166 | 185 | 204 | 223 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 131 | 152 | 173 | 194 | 215 | 236 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 155 | 178 | 201 | 224 | 247 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 181 | 206 | 231 | 256 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 209 | 236 | 263 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 239 | 268 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 271 |
B | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 50 | 53 | 56 | 59 | 62 | 65 | 68 | 71 | 74 | 77 | 80 | 83 | 86 | 89 | 92 |
3 | 81 | 86 | 91 | 96 | 101 | 106 | 111 | 116 | 121 | 126 | 131 | 136 | 141 | 146 | 151 |
4 | 110 | 117 | 124 | 131 | 138 | 145 | 152 | 159 | 166 | 173 | 180 | 187 | 194 | 201 | 208 |
5 | 137 | 146 | 155 | 164 | 173 | 182 | 191 | 200 | 209 | 218 | 227 | 236 | 245 | 254 | 263 |
6 | 162 | 173 | 184 | 195 | 206 | 217 | 228 | 239 | 250 | 261 | 272 | 283 | 294 | 305 | 316 |
7 | 185 | 198 | 211 | 224 | 237 | 250 | 263 | 276 | 289 | 302 | 315 | 328 | 341 | 354 | 367 |
8 | 206 | 221 | 236 | 251 | 266 | 281 | 296 | 311 | 326 | 341 | 356 | 371 | 386 | 401 | 416 |
9 | 225 | 242 | 259 | 276 | 293 | 310 | 327 | 344 | 361 | 378 | 395 | 412 | 429 | 446 | 463 |
10 | 242 | 261 | 280 | 299 | 318 | 337 | 356 | 375 | 394 | 413 | 432 | 451 | 470 | 489 | 508 |
11 | 257 | 278 | 299 | 320 | 341 | 362 | 383 | 404 | 425 | 446 | 467 | 488 | 509 | 530 | 551 |
12 | 270 | 293 | 316 | 339 | 362 | 385 | 408 | 431 | 454 | 477 | 500 | 523 | 546 | 569 | 592 |
13 | 281 | 306 | 331 | 356 | 381 | 406 | 431 | 456 | 481 | 506 | 531 | 556 | 581 | 606 | 631 |
14 | 290 | 317 | 344 | 371 | 398 | 425 | 452 | 479 | 506 | 533 | 560 | 587 | 614 | 641 | 668 |
15 | 297 | 326 | 355 | 384 | 413 | 442 | 471 | 500 | 529 | 558 | 587 | 616 | 645 | 674 | 703 |
16 | 302 | 333 | 364 | 395 | 426 | 457 | 488 | 519 | 550 | 581 | 612 | 643 | 674 | 705 | 736 |
B | m=17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=17 | 305 | 338 | 371 | 404 | 437 | 470 | 503 | 536 | 569 | 602 | 635 | 668 | 701 | 734 | 767 |
18 | ... | 341 | 376 | 411 | 446 | 481 | 516 | 551 | 586 | 621 | 656 | 691 | 726 | 761 | 796 |
19 | ... | ... | 379 | 416 | 453 | 490 | 527 | 564 | 601 | 638 | 675 | 712 | 749 | 786 | 823 |
20 | ... | ... | ... | 419 | 458 | 497 | 536 | 575 | 614 | 653 | 692 | 731 | 770 | 809 | 848 |
21 | ... | ... | ... | ... | 461 | 502 | 543 | 584 | 625 | 666 | 707 | 748 | 789 | 830 | 871 |
22 | ... | ... | ... | ... | ... | 505 | 548 | 591 | 634 | 677 | 720 | 763 | 806 | 849 | 892 |
23 | ... | ... | ... | ... | ... | ... | 551 | 596 | 641 | 686 | 731 | 776 | 821 | 866 | 911 |
24 | ... | ... | ... | ... | ... | ... | ... | 599 | 646 | 693 | 740 | 787 | 834 | 881 | 928 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | 649 | 698 | 747 | 796 | 845 | 894 | 943 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 701 | 752 | 803 | 854 | 905 | 956 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 755 | 808 | 861 | 914 | 967 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 811 | 866 | 921 | 976 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 869 | 926 | 983 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 929 | 988 |
31 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 991 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit hexagons in the puzzles.
12: polyhexes of order 1 to 3
28: tetrahexes
37: trihexes + tetrahexes
40: polyhexes of order 1 to 4
40: one-sided tetrahexes
49: one-sided trihexes + tetrahexes
52: one-sided polyhexes of order 1 to 4
110: pentahexes
150: polyhexes of order 1 to 5
165: one-sided pentahexes
217: one-sided polyhexes of order 1 to 5
486: hexahexes less the O06 piece (which has a hole)
492: hexahexes, complete (all puzzles which include the O06 piece must have at least one single-hexagon hole)
(Hexahexes on the Poly Pages: http://www.recmath.com/PolyPages/PolyPages/index.htm?6hexes.html)
Potential:
No solutions:
impossible since O06 needs a hole:
642: polyhexes of order 1 to 6
882: one-sided hexahexes
1099: one-sided polyhexes of order 1 to 6