An Introduction to Polyhexes

Author: David Goodger <goodger@python.org>
Date: 2015-02-24
Revision: 600
Web site:http://puzzler.sourceforge.net/
Copyright: © 1998-2015 by David J. Goodger
License:GPL 2
images/puzzler.png

Contents

Polyhexes are polyforms constructed from unit hexagons joined edge-to-edge on a regular hexagonal grid (a honeycomb grid).

Here is a puzzle containing all the polyhexes of order 1 through 5:

images/hexes/polyhexes-12345-triangle.png

See Polyhexes: Puzzles & Solutions and Pentahexes: Puzzles & Solutions for many more puzzles.

Polyforms

The number and names of the various orders of polyhexes are as follows:

Order
Polyform
Name
Free
Polyhexes
One-Sided
Polyhexes
1 monohex 1 1
2 dihex 1 1
3 trihexes 3 3
4 tetrahexes 7 10
5 pentahexes 22 33
6* hexahexes 82 147

"*" above means that forms with enclosed holes exist.

The numbers of polyhexes can also be found in the following sequences from The On-Line Encyclopedia of Integer Sequences: A000228 (free) and A006535 (one-sided).

Examples of the polyhexes from order 1 (monohex) to order 6 (hexahexes) are given in the tables below.

The polyhexes are named with a letter-number scheme, like "H1", "A3", and "I06". The initial letter is the letter of the alphabet that the polyhex most closely resembles. In some cases, that resemblance is weak, and the letters are arbitrary. The final digit of the number represents the polyform order (how many unit hexagons are in the polyhex). There are more hexahexes than letters in the alphabet, so their names have an extra middle digit (numbered from 0) to differentiate the variations.

In the tables below, "Aspects" refers to the number of unique orientations that a polyform may take (different rotations, flipped or not). This varies with the symmetry of the polyform.

The "One-Sided" column identifies polyforms that are asymmetrical in reflection. Treating the flipped and unflipped versions of asymmetrical polyhexes as distinct polyforms (and disallowing further reflection or "flipping"), results in "one-sided" polyhexes and puzzles.

Monohex

There is only one monohex (order-1 polyhex):

Name Image Aspects One-Sided
H1 images/pieces/polyhexes/H1.png 3  

Dihex

There is only one dihex (order-2 polyhex):

Name Image Aspects One-Sided
I2 images/pieces/polyhexes/I2.png 3  

Trihexes

There are 3 trihexes (order-3 polyhexes):

Name Image Aspects One-Sided
A3 images/pieces/polyhexes/A3.png 2  
I3 images/pieces/polyhexes/I3.png 3  
V3 images/pieces/polyhexes/V3.png 6  

Tetrahexes

There are 7 free tetrahexes (order-4 polyhexes) and 10 one-sided tetrahexes:

Name Image Aspects One-Sided
I4 images/pieces/polyhexes/I4.png 3  
J4 images/pieces/polyhexes/J4.png 12 yes
O4 images/pieces/polyhexes/O4.png 3  
P4 images/pieces/polyhexes/P4.png 12 yes
S4 images/pieces/polyhexes/S4.png 6 yes
U4 images/pieces/polyhexes/U4.png 6  
Y4 images/pieces/polyhexes/Y4.png 2  

Pentahexes

There are 22 free pentahexes (order-5 polyhexes) and 33 one-sided pentahexes:

Name Image Aspects One-Sided
A5 images/pieces/polyhexes/A5.png 6  
B5 images/pieces/polyhexes/B5.png 12 yes
C5 images/pieces/polyhexes/C5.png 6  
D5 images/pieces/polyhexes/D5.png 6  
E5 images/pieces/polyhexes/E5.png 6  
F5 images/pieces/polyhexes/F5.png 12 yes
G5 images/pieces/polyhexes/G5.png 12 yes
H5 images/pieces/polyhexes/H5.png 12 yes
I5 images/pieces/polyhexes/I5.png 3  
J5 images/pieces/polyhexes/J5.png 12 yes
L5 images/pieces/polyhexes/L5.png 6  
N5 images/pieces/polyhexes/N5.png 12 yes
P5 images/pieces/polyhexes/P5.png 12 yes
Q5 images/pieces/polyhexes/Q5.png 12 yes
R5 images/pieces/polyhexes/R5.png 12 yes
S5 images/pieces/polyhexes/S5.png 6 yes
T5 images/pieces/polyhexes/T5.png 12 yes
U5 images/pieces/polyhexes/U5.png 6  
V5 images/pieces/polyhexes/V5.png 6  
W5 images/pieces/polyhexes/W5.png 6  
X5 images/pieces/polyhexes/X5.png 3  
Y5 images/pieces/polyhexes/Y5.png 6  

Hexahexes

There are 82 free hexahexes (order-6 polyhexes) and 147 one-sided hexahexes:

Name Image Aspects One-Sided
A06 images/pieces/polyhexes/A06.png 2  
A16 images/pieces/polyhexes/A16.png 12 yes
A26 images/pieces/polyhexes/A26.png 12 yes
C06 images/pieces/polyhexes/C06.png 6  
C16 images/pieces/polyhexes/C16.png 6  
C26 images/pieces/polyhexes/C26.png 12 yes
C36 images/pieces/polyhexes/C36.png 12 yes
C46 images/pieces/polyhexes/C46.png 12 yes
C56 images/pieces/polyhexes/C56.png 12 yes
C66 images/pieces/polyhexes/C66.png 12 yes
C76 images/pieces/polyhexes/C76.png 12 yes
E06 images/pieces/polyhexes/E06.png 6  
F06 images/pieces/polyhexes/F06.png 12 yes
F16 images/pieces/polyhexes/F16.png 12 yes
H06 images/pieces/polyhexes/H06.png 12 yes
H16 images/pieces/polyhexes/H16.png 12 yes
H26 images/pieces/polyhexes/H26.png 12 yes
I06 images/pieces/polyhexes/I06.png 3  
J06 images/pieces/polyhexes/J06.png 12 yes
J16 images/pieces/polyhexes/J16.png 12 yes
J26 images/pieces/polyhexes/J26.png 12 yes
J36 images/pieces/polyhexes/J36.png 12 yes
J46 images/pieces/polyhexes/J46.png 12 yes
K06 images/pieces/polyhexes/K06.png 12 yes
L06 images/pieces/polyhexes/L06.png 12 yes
L16 images/pieces/polyhexes/L16.png 12 yes
L26 images/pieces/polyhexes/L26.png 12 yes
L36 images/pieces/polyhexes/L36.png 12 yes
M06 images/pieces/polyhexes/M06.png 12 yes
M16 images/pieces/polyhexes/M16.png 12 yes
M26 images/pieces/polyhexes/M26.png 12 yes
M36 images/pieces/polyhexes/M36.png 6 yes
M46 images/pieces/polyhexes/M46.png 6 yes
N06 images/pieces/polyhexes/N06.png 6 yes
N16 images/pieces/polyhexes/N16.png 12 yes
O06 images/pieces/polyhexes/O06.png 1  
P06 images/pieces/polyhexes/P06.png 12 yes
P16 images/pieces/polyhexes/P16.png 12 yes
P26 images/pieces/polyhexes/P26.png 12 yes
P36 images/pieces/polyhexes/P36.png 12 yes
P46 images/pieces/polyhexes/P46.png 12 yes
P56 images/pieces/polyhexes/P56.png 12 yes
P66 images/pieces/polyhexes/P66.png 12 yes
P76 images/pieces/polyhexes/P76.png 12 yes
Q06 images/pieces/polyhexes/Q06.png 12 yes
Q16 images/pieces/polyhexes/Q16.png 12 yes
Q26 images/pieces/polyhexes/Q26.png 12 yes
Q36 images/pieces/polyhexes/Q36.png 12 yes
R06 images/pieces/polyhexes/R06.png 12 yes
R16 images/pieces/polyhexes/R16.png 12 yes
S06 images/pieces/polyhexes/S06.png 6 yes
S16 images/pieces/polyhexes/S16.png 6 yes
S26 images/pieces/polyhexes/S26.png 6 yes
S36 images/pieces/polyhexes/S36.png 12 yes
T06 images/pieces/polyhexes/T06.png 6  
T16 images/pieces/polyhexes/T16.png 6  
T26 images/pieces/polyhexes/T26.png 12 yes
T36 images/pieces/polyhexes/T36.png 12 yes
T46 images/pieces/polyhexes/T46.png 12 yes
T56 images/pieces/polyhexes/T56.png 6  
T66 images/pieces/polyhexes/T66.png 12 yes
T76 images/pieces/polyhexes/T76.png 12 yes
U06 images/pieces/polyhexes/U06.png 6  
U16 images/pieces/polyhexes/U16.png 6  
U26 images/pieces/polyhexes/U26.png 12 yes
V06 images/pieces/polyhexes/V06.png 6  
V16 images/pieces/polyhexes/V16.png 12 yes
W06 images/pieces/polyhexes/W06.png 12 yes
W16 images/pieces/polyhexes/W16.png 12 yes
W26 images/pieces/polyhexes/W26.png 12 yes
W36 images/pieces/polyhexes/W36.png 12 yes
X06 images/pieces/polyhexes/X06.png 3  
X16 images/pieces/polyhexes/X16.png 3  
X26 images/pieces/polyhexes/X26.png 12 yes
Y06 images/pieces/polyhexes/Y06.png 6  
Y16 images/pieces/polyhexes/Y16.png 6  
Y26 images/pieces/polyhexes/Y26.png 6  
Y36 images/pieces/polyhexes/Y36.png 12 yes
Y46 images/pieces/polyhexes/Y46.png 12 yes
Y56 images/pieces/polyhexes/Y56.png 12 yes
Y66 images/pieces/polyhexes/Y66.png 4 yes
Z06 images/pieces/polyhexes/Z06.png 6 yes

Coordinate System

Polyhex puzzles use a skewed 2-D coordinate system, where the X and Y axes are 60° apart instead of the usual 90°. The typical representation (as seen in the Polyform Puzzler solution data files) positions the Y axis vertically with the X axis 30° counter-clockwise from horizontal:

                        __   3
                     __/  \
                  __/  \  /  2
               __/   __/  \
            __/     /   __/  1
         __/  \__   \  /  \
      __/   __   \__/  \  /  y=0
     /  \  /  \__/  \__/  \
  3  \  /  \__    __/   __/
     /  \__/  \  /   __/
  2  \  /     /  \__/    6
     /  \     \__/    5
  1  \  /   __/    4
     /  \__/    3
y=0  \__/    2
          1
     x=0

Each unit hexagon has 6 immediate neighbors. The neighbors of the hexagon at coordinates (x, y) are:

{(x+1, y), (x, y+1), (x-1, y-1), (x-1, y), (x, y-1), (x+1, y-1)}