Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2016-12-05 |
Revision: | 644 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2016 by David J. Goodger |
License: | GPL 2 |
Units are equilateral triangles.
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | moniamond | 1 | 1 | 1 | 1 | 1 | 1 |
2 | diamond | 1 | 2 | 3 | 1 | 2 | 3 |
3 | triamond | 1 | 3 | 6 | 1 | 3 | 6 |
4 | tetriamond | 3 | 12 | 18 | 4 | 16 | 22 |
5 | pentiamond | 4 | 20 | 38 | 6 | 30 | 52 |
6 | hexiamond | 12 | 72 | 110 | 19 | 114 | 166 |
7 | heptiamond | 24 | 168 | 278 | 43 | 301 | 467 |
8 | octiamond | 66 | 528 | 806 | 120 | 960 | 1427 |
In the table below, the "Min-D" and "Max-D" columns record, respectively, the minimum and maximum disparities that can be supported by these polyiamonds: the minimum and maximum discrepancies in parity of the puzzle's unit triangles, i.e. the minimum and maximum differences between the number of z=0 and z=1 triangles.
Order | Name | Free | Units | Min-D | Max-D | One-sided | Units | Min-D | Max-D |
---|---|---|---|---|---|---|---|---|---|
1 | moniamond | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | diamond | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 0 |
3 | triamond | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 1 |
4 | tetriamond | 3 | 12 | 2 | 2 | 4 | 16 | 2 | 2 |
5 | pentiamond | 4 | 20 | 0 | 4 | 6 | 30 | 0 | 6 |
6 | hexiamond | 12 | 72 | 0 | 4 | 19 | 114 | 0 | 8 |
7 | heptiamond | 24 | 168 | 0 | 26 | 43 | 301 | 1 | 45 |
8 | octiamond | 66 | 528 | ? | ? | 120 | 960 | ? | ? |
Triangles:
T(n) = n²
Hexagons:
H(n) = 6T(n) = 6n²
Hexagrams:
Hg(n) = H(n) + 6T(n) = 2H(n) = 12n²
n | n-Triangle | n-Hexagon | n-Hexagram |
---|---|---|---|
1 | 1 | 6 | 12 |
2 | 4 | 24 | 48 |
3 | 9 | 54 | 108 |
4 | 16 | 96 | 192 |
5 | 25 | 150 | 300 |
6 | 36 | 216 | 432 |
7 | 49 | 294 | 588 |
8 | 64 | 384 | 768 |
9 | 81 | 486 | 972 |
10 | 100 | 600 | 1200 |
11 | 121 | 726 | 1452 |
12 | 144 | 864 | 1728 |
13 | 169 | 1014 | 2028 |
14 | 196 | 1176 | 2352 |
15 | 225 | 1350 | 2700 |
16 | 256 | 1536 | 3072 |
17 | 289 | 1734 | 3468 |
18 | 324 | 1944 | 3888 |
19 | 361 | 2166 | 4332 |
20 | 400 | 2400 | 4800 |
21 | 441 | 2646 | 5292 |
22 | 484 | 2904 | 5808 |
23 | 529 | 3174 | 6348 |
24 | 576 | 3456 | 6912 |
Parallelograms:
P(m,n) = 2mn
P | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
2 | ... | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
3 | ... | ... | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 |
4 | ... | ... | ... | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
5 | ... | ... | ... | ... | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
6 | ... | ... | ... | ... | ... | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 |
7 | ... | ... | ... | ... | ... | ... | 98 | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 |
8 | ... | ... | ... | ... | ... | ... | ... | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 162 | 180 | 198 | 216 | 234 | 252 | 270 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 200 | 220 | 240 | 260 | 280 | 300 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 242 | 264 | 286 | 308 | 330 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 288 | 312 | 336 | 360 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 338 | 364 | 390 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 392 | 420 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 450 |
Trapezoids:
Tr(m,n) = P(m,n) - T(n) = 2mn - n²
Tr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
2 | ... | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
3 | ... | ... | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | 63 | 69 | 75 | 81 | 87 |
4 | ... | ... | ... | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 |
5 | ... | ... | ... | ... | 35 | 45 | 55 | 65 | 75 | 85 | 95 | 105 | 115 | 125 | 135 |
6 | ... | ... | ... | ... | ... | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 |
7 | ... | ... | ... | ... | ... | ... | 63 | 77 | 91 | 105 | 119 | 133 | 147 | 161 | 175 |
8 | ... | ... | ... | ... | ... | ... | ... | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 99 | 117 | 135 | 153 | 171 | 189 | 207 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 120 | 140 | 160 | 180 | 200 | 220 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 143 | 165 | 187 | 209 | 231 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 168 | 192 | 216 | 240 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 195 | 221 | 247 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 224 | 252 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 255 |
Elongated hexagons:
He(m,n) = 2P(m,n) + 2T(n) = 4mn + 2n² = 2n(2m + n)
He | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 |
2 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
3 | 30 | 42 | 54 | 66 | 78 | 90 | 102 | 114 | 126 | 138 | 150 | 162 | 174 | 186 |
4 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | 256 |
5 | 70 | 90 | 110 | 130 | 150 | 170 | 190 | 210 | 230 | 250 | 270 | 290 | 310 | 330 |
6 | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 | 288 | 312 | 336 | 360 | 384 | 408 |
7 | 126 | 154 | 182 | 210 | 238 | 266 | 294 | 322 | 350 | 378 | 406 | 434 | 462 | 490 |
8 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 416 | 448 | 480 | 512 | 544 | 576 |
9 | 198 | 234 | 270 | 306 | 342 | 378 | 414 | 450 | 486 | 522 | 558 | 594 | 630 | 666 |
10 | 240 | 280 | 320 | 360 | 400 | 440 | 480 | 520 | 560 | 600 | 640 | 680 | 720 | 760 |
11 | 286 | 330 | 374 | 418 | 462 | 506 | 550 | 594 | 638 | 682 | 726 | 770 | 814 | 858 |
12 | 336 | 384 | 432 | 480 | 528 | 576 | 624 | 672 | 720 | 768 | 816 | 864 | 912 | 960 |
13 | 390 | 442 | 494 | 546 | 598 | 650 | 702 | 754 | 806 | 858 | 910 | 962 | 1014 | 1066 |
14 | 448 | 504 | 560 | 616 | 672 | 728 | 784 | 840 | 896 | 952 | 1008 | 1064 | 1120 | 1176 |
15 | 510 | 570 | 630 | 690 | 750 | 810 | 870 | 930 | 990 | 1050 | 1110 | 1170 | 1230 | 1290 |
Semiregular hexagons:
Hs(m,n) = T(m+2n) - 3T(n) = m² + 4mn + 4n² - 3n² = m² + 4mn + n²
Hs | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 13 | 22 | 33 | 46 | 61 | 78 | 97 | 118 | 141 | 166 | 193 | 222 | 253 | 286 |
2 | ... | 37 | 52 | 69 | 88 | 109 | 132 | 157 | 184 | 213 | 244 | 277 | 312 | 349 |
3 | ... | ... | 73 | 94 | 117 | 142 | 169 | 198 | 229 | 262 | 297 | 334 | 373 | 414 |
4 | ... | ... | ... | 121 | 148 | 177 | 208 | 241 | 276 | 313 | 352 | 393 | 436 | 481 |
5 | ... | ... | ... | ... | 181 | 214 | 249 | 286 | 325 | 366 | 409 | 454 | 501 | 550 |
6 | ... | ... | ... | ... | ... | 253 | 292 | 333 | 376 | 421 | 468 | 517 | 568 | 621 |
7 | ... | ... | ... | ... | ... | ... | 337 | 382 | 429 | 478 | 529 | 582 | 637 | 694 |
8 | ... | ... | ... | ... | ... | ... | ... | 433 | 484 | 537 | 592 | 649 | 708 | 769 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 541 | 598 | 657 | 718 | 781 | 846 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 661 | 724 | 789 | 856 | 925 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 793 | 862 | 933 | 1006 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 937 | 1012 | 1089 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1093 | 1174 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1261 |
Chevrons:
C(m,n) = P(m,2n) = 4mn
C | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
2 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
3 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 |
4 | 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 |
5 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 |
6 | 24 | 48 | 72 | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 | 288 | 312 | 336 | 360 |
7 | 28 | 56 | 84 | 112 | 140 | 168 | 196 | 224 | 252 | 280 | 308 | 336 | 364 | 392 | 420 |
8 | 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 416 | 448 | 480 |
9 | 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | 360 | 396 | 432 | 468 | 504 | 540 |
10 | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 440 | 480 | 520 | 560 | 600 |
11 | 44 | 88 | 132 | 176 | 220 | 264 | 308 | 352 | 396 | 440 | 484 | 528 | 572 | 616 | 660 |
12 | 48 | 96 | 144 | 192 | 240 | 288 | 336 | 384 | 432 | 480 | 528 | 576 | 624 | 672 | 720 |
13 | 52 | 104 | 156 | 208 | 260 | 312 | 364 | 416 | 468 | 520 | 572 | 624 | 676 | 728 | 780 |
14 | 56 | 112 | 168 | 224 | 280 | 336 | 392 | 448 | 504 | 560 | 616 | 672 | 728 | 784 | 840 |
15 | 60 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | 540 | 600 | 660 | 720 | 780 | 840 | 900 |
Butterflies:
B(m,n) = 2Tr(m,n) = 4mn - 2n²
B | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 |
2 | ... | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 |
3 | ... | ... | 30 | 42 | 54 | 66 | 78 | 90 | 102 | 114 | 126 | 138 | 150 | 162 |
4 | ... | ... | ... | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 |
5 | ... | ... | ... | ... | 70 | 90 | 110 | 130 | 150 | 170 | 190 | 210 | 230 | 250 |
6 | ... | ... | ... | ... | ... | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 | 288 |
7 | ... | ... | ... | ... | ... | ... | 126 | 154 | 182 | 210 | 238 | 266 | 294 | 322 |
8 | ... | ... | ... | ... | ... | ... | ... | 160 | 192 | 224 | 256 | 288 | 320 | 352 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 198 | 234 | 270 | 306 | 342 | 378 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 240 | 280 | 320 | 360 | 400 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 286 | 330 | 374 | 418 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 336 | 384 | 432 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 390 | 442 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 448 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit equilateral triangles in the puzzles.
6: polyiamonds of order 1 to 3
18: polyiamonds of order 1 to 4
22: one-sided polyiamonds of order 1 to 4
38: polyiamonds of order 1 to 5
52: one-sided polyiamonds of order 1 to 5
72: Hexiamonds
92: pentiamonds & hexiamonds
108: 18 of 19 one-sided hexiamonds
110: polyiamonds of order 1 to 6
114: One-sided hexiamonds
166: one-sided polyiamonds of order 1 to 6
168: Heptiamonds
278: polyiamonds of order 1 to 7
301: One-sided heptiamonds
467: one-sided polyiamonds of order 1 to 7