Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2015-02-24 |
Revision: | 600 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are squares.
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | monomino | 1 | 1 | 1 | 1 | 1 | 1 |
2 | domino | 1 | 2 | 3 | 1 | 2 | 3 |
3 | tromino | 2 | 6 | 9 | 2 | 6 | 9 |
4 | tetromino | 5 | 20 | 29 | 7 | 28 | 37 |
5 | pentomino | 12 | 60 | 89 | 18 | 90 | 127 |
6 | hexomino | 35 | 210 | 299 | 60 | 360 | 487 |
7* | heptomino | 108 | 756* | 1055 | 196 | 1014* | 1501 |
8* | octomino | 369 | 2952* | 4007 | 704 | 4928* | 6429 |
9* | enneomino | 1285 | 11565* | 2500 | 22500* | ||
10* | decomino | 4655 | 46550* | 9189 | 91890* |
"*" indicates that pieces with holes exist.
Squares:
S(n) = n²
Triangles (n == height):
T(n) = n(n + 1) / 2 # ## ### ####
Diamonds (n == side length or height of quadrant; A001844):
D(n) = 4T(n) - 4n +1 = 2n² - 2n + 1 = 2n(n - 1) + 1 = n² + (n - 1)² (== centered square numbers) # ### ##### ### #
Aztec Diamonds (n == side length or height of quadrant; A046092):
A(n) = 2n(n + 1) ## #### ###### ###### #### ##
Double-Triangles (n == height; base = 2n-1):
DT(n) = n² = S(n) # ### #####
n | S | T | D | A |
---|---|---|---|---|
1 | 1 | 1 | 1 | 4 |
2 | 4 | 3 | 5 | 12 |
3 | 9 | 6 | 13 | 24 |
4 | 16 | 10 | 25 | 40 |
5 | 25 | 15 | 41 | 60 |
6 | 36 | 21 | 61 | 84 |
7 | 49 | 28 | 85 | 112 |
8 | 64 | 36 | 113 | 144 |
9 | 81 | 45 | 145 | 180 |
10 | 100 | 55 | 181 | 220 |
11 | 121 | 66 | 221 | 264 |
12 | 144 | 78 | 265 | 312 |
13 | 169 | 91 | 313 | 364 |
14 | 196 | 105 | 365 | 420 |
15 | 225 | 120 | 421 | 480 |
16 | 256 | 136 | 481 | 544 |
17 | 289 | 153 | 545 | 612 |
18 | 324 | 171 | 613 | 684 |
19 | 361 | 190 | 685 | 760 |
20 | 400 | 210 | 761 | 840 |
21 | 441 | 231 | 841 | 924 |
22 | 484 | 253 | 925 | 1012 |
23 | 529 | 276 | 1013 | 1104 |
24 | 576 | 300 | 1105 | 1200 |
25 | 625 | 325 | 1201 | 1300 |
26 | 676 | 351 | 1301 | 1404 |
27 | 729 | 378 | 1405 | 1512 |
28 | 784 | 406 | 1513 | 1624 |
29 | 841 | 435 | 1625 | 1740 |
30 | 900 | 465 | 1741 | 1860 |
31 | 961 | 496 | 1861 | 1984 |
32 | 1024 | 528 | 1985 | 2112 |
33 | 1089 | 561 | 2113 | 2244 |
34 | 1156 | 595 | 2245 | 2380 |
35 | 1225 | 630 | 2381 | 2520 |
36 | 1296 | 666 | 2521 | 2664 |
37 | 1369 | 703 | 2665 | 2812 |
38 | 1444 | 741 | 2813 | 2964 |
39 | 1521 | 780 | 2965 | 3120 |
40 | 1600 | 820 | 3121 | 3280 |
Rectangles:
R(m,n) = mn
R | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | ... | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
3 | ... | ... | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 |
4 | ... | ... | ... | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
5 | ... | ... | ... | ... | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
6 | ... | ... | ... | ... | ... | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 |
7 | ... | ... | ... | ... | ... | ... | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 |
8 | ... | ... | ... | ... | ... | ... | ... | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 81 | 90 | 99 | 108 | 117 | 126 | 135 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 100 | 110 | 120 | 130 | 140 | 150 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 121 | 132 | 143 | 154 | 165 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 144 | 156 | 168 | 180 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 169 | 182 | 195 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 196 | 210 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 225 |
R | m=16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
2 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 |
3 | 48 | 51 | 54 | 57 | 60 | 63 | 66 | 69 | 72 | 75 | 78 | 81 | 84 | 87 | 90 |
4 | 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92 | 96 | 100 | 104 | 108 | 112 | 116 | 120 |
5 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 |
6 | 96 | 102 | 108 | 114 | 120 | 126 | 132 | 138 | 144 | 150 | 156 | 162 | 168 | 174 | 180 |
7 | 112 | 119 | 126 | 133 | 140 | 147 | 154 | 161 | 168 | 175 | 182 | 189 | 196 | 203 | 210 |
8 | 128 | 136 | 144 | 152 | 160 | 168 | 176 | 184 | 192 | 200 | 208 | 216 | 224 | 232 | 240 |
9 | 144 | 153 | 162 | 171 | 180 | 189 | 198 | 207 | 216 | 225 | 234 | 243 | 252 | 261 | 270 |
10 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
11 | 176 | 187 | 198 | 209 | 220 | 231 | 242 | 253 | 264 | 275 | 286 | 297 | 308 | 319 | 330 |
12 | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 | 288 | 300 | 312 | 324 | 336 | 348 | 360 |
13 | 208 | 221 | 234 | 247 | 260 | 273 | 286 | 299 | 312 | 325 | 338 | 351 | 364 | 377 | 390 |
14 | 224 | 238 | 252 | 266 | 280 | 294 | 308 | 322 | 336 | 350 | 364 | 378 | 392 | 406 | 420 |
15 | 240 | 255 | 270 | 285 | 300 | 315 | 330 | 345 | 360 | 375 | 390 | 405 | 420 | 435 | 450 |
R | m=16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=16 | 256 | 272 | 288 | 304 | 320 | 336 | 352 | 368 | 384 | 400 | 416 | 432 | 448 | 464 | 480 |
17 | ... | 289 | 306 | 323 | 340 | 357 | 374 | 391 | 408 | 425 | 442 | 459 | 476 | 493 | 510 |
18 | ... | ... | 324 | 342 | 360 | 378 | 396 | 414 | 432 | 450 | 468 | 486 | 504 | 522 | 540 |
19 | ... | ... | ... | 361 | 380 | 399 | 418 | 437 | 456 | 475 | 494 | 513 | 532 | 551 | 570 |
20 | ... | ... | ... | ... | 400 | 420 | 440 | 460 | 480 | 500 | 520 | 540 | 560 | 580 | 600 |
21 | ... | ... | ... | ... | ... | 441 | 462 | 483 | 504 | 525 | 546 | 567 | 588 | 609 | 630 |
22 | ... | ... | ... | ... | ... | ... | 484 | 506 | 528 | 550 | 572 | 594 | 616 | 638 | 660 |
23 | ... | ... | ... | ... | ... | ... | ... | 529 | 552 | 575 | 598 | 621 | 644 | 667 | 690 |
24 | ... | ... | ... | ... | ... | ... | ... | ... | 576 | 600 | 624 | 648 | 672 | 696 | 720 |
25 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 625 | 650 | 675 | 700 | 725 | 750 |
26 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 676 | 702 | 728 | 754 | 780 |
27 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 729 | 756 | 783 | 810 |
28 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 784 | 812 | 840 |
29 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 841 | 870 |
30 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 900 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit squares in the puzzles.
20 unit squares: tetrominoes -- no symmetrical puzzles due to parity (T4)
28: one-sided tetrominoes -- no symmetrical puzzles due to parity (T4)
28: polyominoes of order 2 - 4
29: polyominoes of order 1 - 4
36: one-sided polyominoes of order 2 - 4
37: one-sided polyominoes of order 1 - 4
60 unit squares: pentominoes
61: pentominoes + monomino
64: pentominoes + 1 tetromino (square)
80: polyominoes of order 4 & 5 -- tetrominoes + pentominoes
88: polyominoes of order 2 - 5
89: polyominoes of order 1 - 5
90: one-sided pentominoes
126: one-sided polyominoes of order 2 - 5
127: one-sided polyominoes of order 1 - 5
210: hexominoes -- no simple symmetrical puzzles due to parity
216: hexominoes + 1 duplicate == 6³ == Kadon "Sextillions"
298: polyominoes of order 2 - 6
299: polyominoes of order 1 - 6
360: one-sided hexominoes
486: one-sided polyominoes of order 2 - 6
487: one-sided polyominoes of order 1 - 6