Notes on Polyominoes

Author: David Goodger <goodger@python.org>
Date: 2015-02-24
Revision: 600
Web site:http://puzzler.sourceforge.net/
Copyright: © 1998-2015 by David J. Goodger
License:GPL 2
images/puzzler.png

Contents

Polyform Counts

Units are squares.

Order Name Free Units Sum One-sided Units Sum
1 monomino 1 1 1 1 1 1
2 domino 1 2 3 1 2 3
3 tromino 2 6 9 2 6 9
4 tetromino 5 20 29 7 28 37
5 pentomino 12 60 89 18 90 127
6 hexomino 35 210 299 60 360 487
7* heptomino 108 756* 1055 196 1014* 1501
8* octomino 369 2952* 4007 704 4928* 6429
9* enneomino 1285 11565*   2500 22500*  
10* decomino 4655 46550*   9189 91890*  

"*" indicates that pieces with holes exist.

Shapes

Squares:

S(n) = n²

Triangles (n == height):

T(n) = n(n + 1) / 2

#
##
###
####

Diamonds (n == side length or height of quadrant; A001844):

D(n) = 4T(n) - 4n +1
     = 2n² - 2n + 1
     = 2n(n - 1) + 1
     = n² + (n - 1)²
    (== centered square numbers)

  #
 ###
#####
 ###
  #

Aztec Diamonds (n == side length or height of quadrant; A046092):

A(n) = 2n(n + 1)

  ##
 ####
######
######
 ####
  ##

Double-Triangles (n == height; base = 2n-1):

DT(n) = n²
      = S(n)

  #
 ###
#####
n S T D A
1 1 1 1 4
2 4 3 5 12
3 9 6 13 24
4 16 10 25 40
5 25 15 41 60
6 36 21 61 84
7 49 28 85 112
8 64 36 113 144
9 81 45 145 180
10 100 55 181 220
11 121 66 221 264
12 144 78 265 312
13 169 91 313 364
14 196 105 365 420
15 225 120 421 480
16 256 136 481 544
17 289 153 545 612
18 324 171 613 684
19 361 190 685 760
20 400 210 761 840
21 441 231 841 924
22 484 253 925 1012
23 529 276 1013 1104
24 576 300 1105 1200
25 625 325 1201 1300
26 676 351 1301 1404
27 729 378 1405 1512
28 784 406 1513 1624
29 841 435 1625 1740
30 900 465 1741 1860
31 961 496 1861 1984
32 1024 528 1985 2112
33 1089 561 2113 2244
34 1156 595 2245 2380
35 1225 630 2381 2520
36 1296 666 2521 2664
37 1369 703 2665 2812
38 1444 741 2813 2964
39 1521 780 2965 3120
40 1600 820 3121 3280

Rectangles:

R(m,n) = mn
R m=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 ... 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 ... ... 9 12 15 18 21 24 27 30 33 36 39 42 45
4 ... ... ... 16 20 24 28 32 36 40 44 48 52 56 60
5 ... ... ... ... 25 30 35 40 45 50 55 60 65 70 75
6 ... ... ... ... ... 36 42 48 54 60 66 72 78 84 90
7 ... ... ... ... ... ... 49 56 63 70 77 84 91 98 105
8 ... ... ... ... ... ... ... 64 72 80 88 96 104 112 120
9 ... ... ... ... ... ... ... ... 81 90 99 108 117 126 135
10 ... ... ... ... ... ... ... ... ... 100 110 120 130 140 150
11 ... ... ... ... ... ... ... ... ... ... 121 132 143 154 165
12 ... ... ... ... ... ... ... ... ... ... ... 144 156 168 180
13 ... ... ... ... ... ... ... ... ... ... ... ... 169 182 195
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 196 210
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 225
R m=16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
n=1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
3 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90
4 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120
5 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
6 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180
7 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210
8 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240
9 144 153 162 171 180 189 198 207 216 225 234 243 252 261 270
10 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
11 176 187 198 209 220 231 242 253 264 275 286 297 308 319 330
12 192 204 216 228 240 252 264 276 288 300 312 324 336 348 360
13 208 221 234 247 260 273 286 299 312 325 338 351 364 377 390
14 224 238 252 266 280 294 308 322 336 350 364 378 392 406 420
15 240 255 270 285 300 315 330 345 360 375 390 405 420 435 450
R m=16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
n=16 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480
17 ... 289 306 323 340 357 374 391 408 425 442 459 476 493 510
18 ... ... 324 342 360 378 396 414 432 450 468 486 504 522 540
19 ... ... ... 361 380 399 418 437 456 475 494 513 532 551 570
20 ... ... ... ... 400 420 440 460 480 500 520 540 560 580 600
21 ... ... ... ... ... 441 462 483 504 525 546 567 588 609 630
22 ... ... ... ... ... ... 484 506 528 550 572 594 616 638 660
23 ... ... ... ... ... ... ... 529 552 575 598 621 644 667 690
24 ... ... ... ... ... ... ... ... 576 600 624 648 672 696 720
25 ... ... ... ... ... ... ... ... ... 625 650 675 700 725 750
26 ... ... ... ... ... ... ... ... ... ... 676 702 728 754 780
27 ... ... ... ... ... ... ... ... ... ... ... 729 756 783 810
28 ... ... ... ... ... ... ... ... ... ... ... ... 784 812 840
29 ... ... ... ... ... ... ... ... ... ... ... ... ... 841 870
30 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 900

Potential Puzzles

Puzzles not otherwise noted below have not been implemented or solved.

Initial numbers are the counts of unit squares in the puzzles.

20 unit squares: tetrominoes -- no symmetrical puzzles due to parity (T4)

28: one-sided tetrominoes -- no symmetrical puzzles due to parity (T4)

28: polyominoes of order 2 - 4

29: polyominoes of order 1 - 4

36: one-sided polyominoes of order 2 - 4

37: one-sided polyominoes of order 1 - 4

60 unit squares: pentominoes

61: pentominoes + monomino

64: pentominoes + 1 tetromino (square)

80: polyominoes of order 4 & 5 -- tetrominoes + pentominoes

88: polyominoes of order 2 - 5

89: polyominoes of order 1 - 5

90: one-sided pentominoes

126: one-sided polyominoes of order 2 - 5

127: one-sided polyominoes of order 1 - 5

210: hexominoes -- no simple symmetrical puzzles due to parity

216: hexominoes + 1 duplicate == 6³ == Kadon "Sextillions"

298: polyominoes of order 2 - 6

299: polyominoes of order 1 - 6

360: one-sided hexominoes

486: one-sided polyominoes of order 2 - 6

487: one-sided polyominoes of order 1 - 6