Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2015-02-24 |
Revision: | 600 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are unit line segments on the triangular grid.
The polytrigs (fully-connected):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | monotrig | 1 | 1 | 1 | 1 | 1 | 1 |
2 | ditrig | 3 | 6 | 7 | 3 | 6 | 7 |
3 | tritrig | 12 | 36 | 43 | 19 | 57 | 64 |
4* | tetratrig | 60 | 240 | 283 | 104 | 416 | 480 |
5* | pentatrig | 375 | 1875 | 719 | 3595 |
The quasi-polytrigs (includes disconnected forms that have gaps of maximum length 1):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | quasi-monotrig | 1 | 1 | 1 | 1 | 1 | 1 |
2 | quasi-ditrig | 9 | 18 | 19 | 13 | 26 | 27 |
3 | quasi-tritrig | 140 | 420 | 439 | 259 | 777 | 804 |
4* | quasi-tetratrig | 3377 | 6639 |
"*" above means that pieces with enclosed holes exist.
Holes (denoted by a "*" in the function name) consist of internal segments only, no circumference segments.
Triangles & holes:
T(n) = 3n(n + 1)/2 T*(n) = T(n) - 3n = T(n - 1)
e.g T(n=2) (n is the length of each side):
/\ n=2 /__\
Hexagons & holes:
H(n) = 3n(3n + 1) = 6(T(n) - n) H*(n) = H(n) - 6n = 3n(3n - 1)
e.g. H(2):
____ / \ n=2 / \ \ / \____/
Hexagrams & holes:
Hg(n) = H(n) + 6T(n) - 6n = 6n(3n + 1) Hg*(n) = Hg(n) - 12n = 6n(3n - 1)
e.g. Hg(n=2):
/\ n=2 ____/ \____ \ / \ / / \ /___ ___\ \ / \/
n | T | T* | H | H* | Hg | Hg* |
---|---|---|---|---|---|---|
1 | 3 | 0 | 12 | 6 | 24 | 12 |
2 | 9 | 3 | 42 | 30 | 84 | 60 |
3 | 18 | 9 | 90 | 72 | 180 | 144 |
4 | 30 | 18 | 156 | 132 | 312 | 264 |
5 | 45 | 30 | 240 | 210 | 480 | 420 |
6 | 63 | 45 | 342 | 306 | 684 | 612 |
7 | 84 | 63 | 462 | 420 | 924 | 840 |
8 | 108 | 84 | 600 | 552 | 1200 | 1104 |
9 | 135 | 108 | 756 | 702 | 1512 | 1404 |
10 | 165 | 135 | 930 | 870 | 1860 | 1740 |
11 | 198 | 165 | 1122 | 1056 | 2244 | 2112 |
12 | 234 | 198 | 1332 | 1260 | 2664 | 2520 |
13 | 273 | 234 | 1560 | 1482 | 3120 | 2964 |
14 | 315 | 273 | 1806 | 1722 | 3612 | 3444 |
15 | 360 | 315 | 2070 | 1980 | 4140 | 3960 |
16 | 408 | 360 | 2352 | 2256 | 4704 | 4512 |
17 | 459 | 408 | 2652 | 2550 | 5304 | 5100 |
18 | 513 | 459 | 2970 | 2862 | 5940 | 5724 |
19 | 570 | 513 | 3306 | 3192 | 6612 | 6384 |
20 | 630 | 570 | 3660 | 3540 | 7320 | 7080 |
Elongated hexagons & holes:
He(m,n) = H(n) + (m - n)(6n + 1) = 3n² + 6mn + m + 2n He*(m,n) = He(m,n) - 2m - 4n = 3n² + 6mn - m - 2n
When n==m:
He(n,n) == H(n) He*(n,n) == H*(n)
e.g He(m=6,n=2) (m is the width of the bottom and n is the length of each of the near-vertical sides, not the overall height or width):
____________ / \ n=2 / \ \ / \____________/ m=6
He | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 12 | 19 | 26 | 33 | 40 | 47 | 54 | 61 | 68 | 75 | 82 | 89 | 96 |
2 | 29 | 42 | 55 | 68 | 81 | 94 | 107 | 120 | 133 | 146 | 159 | 172 | 185 |
3 | 52 | 71 | 90 | 109 | 128 | 147 | 166 | 185 | 204 | 223 | 242 | 261 | 280 |
4 | 81 | 106 | 131 | 156 | 181 | 206 | 231 | 256 | 281 | 306 | 331 | 356 | 381 |
5 | 116 | 147 | 178 | 209 | 240 | 271 | 302 | 333 | 364 | 395 | 426 | 457 | 488 |
6 | 157 | 194 | 231 | 268 | 305 | 342 | 379 | 416 | 453 | 490 | 527 | 564 | 601 |
7 | 204 | 247 | 290 | 333 | 376 | 419 | 462 | 505 | 548 | 591 | 634 | 677 | 720 |
8 | 257 | 306 | 355 | 404 | 453 | 502 | 551 | 600 | 649 | 698 | 747 | 796 | 845 |
9 | 316 | 371 | 426 | 481 | 536 | 591 | 646 | 701 | 756 | 811 | 866 | 921 | 976 |
10 | 381 | 442 | 503 | 564 | 625 | 686 | 747 | 808 | 869 | 930 | 991 | 1052 | 1113 |
11 | 452 | 519 | 586 | 653 | 720 | 787 | 854 | 921 | 988 | 1055 | 1122 | 1189 | 1256 |
12 | 529 | 602 | 675 | 748 | 821 | 894 | 967 | 1040 | 1113 | 1186 | 1259 | 1332 | 1405 |
13 | 612 | 691 | 770 | 849 | 928 | 1007 | 1086 | 1165 | 1244 | 1323 | 1402 | 1481 | 1560 |
14 | 701 | 786 | 871 | 956 | 1041 | 1126 | 1211 | 1296 | 1381 | 1466 | 1551 | 1636 | 1721 |
15 | 796 | 887 | 978 | 1069 | 1160 | 1251 | 1342 | 1433 | 1524 | 1615 | 1706 | 1797 | 1888 |
He* | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 |
2 | 19 | 30 | 41 | 52 | 63 | 74 | 85 | 96 | 107 | 118 | 129 | 140 | 151 |
3 | 38 | 55 | 72 | 89 | 106 | 123 | 140 | 157 | 174 | 191 | 208 | 225 | 242 |
4 | 63 | 86 | 109 | 132 | 155 | 178 | 201 | 224 | 247 | 270 | 293 | 316 | 339 |
5 | 94 | 123 | 152 | 181 | 210 | 239 | 268 | 297 | 326 | 355 | 384 | 413 | 442 |
6 | 131 | 166 | 201 | 236 | 271 | 306 | 341 | 376 | 411 | 446 | 481 | 516 | 551 |
7 | 174 | 215 | 256 | 297 | 338 | 379 | 420 | 461 | 502 | 543 | 584 | 625 | 666 |
8 | 223 | 270 | 317 | 364 | 411 | 458 | 505 | 552 | 599 | 646 | 693 | 740 | 787 |
9 | 278 | 331 | 384 | 437 | 490 | 543 | 596 | 649 | 702 | 755 | 808 | 861 | 914 |
10 | 339 | 398 | 457 | 516 | 575 | 634 | 693 | 752 | 811 | 870 | 929 | 988 | 1047 |
11 | 406 | 471 | 536 | 601 | 666 | 731 | 796 | 861 | 926 | 991 | 1056 | 1121 | 1186 |
12 | 479 | 550 | 621 | 692 | 763 | 834 | 905 | 976 | 1047 | 1118 | 1189 | 1260 | 1331 |
13 | 558 | 635 | 712 | 789 | 866 | 943 | 1020 | 1097 | 1174 | 1251 | 1328 | 1405 | 1482 |
14 | 643 | 726 | 809 | 892 | 975 | 1058 | 1141 | 1224 | 1307 | 1390 | 1473 | 1556 | 1639 |
15 | 734 | 823 | 912 | 1001 | 1090 | 1179 | 1268 | 1357 | 1446 | 1535 | 1624 | 1713 | 1802 |
Semi-regular hexagons (two different side lengths, alternating; == truncated triangles) & holes (m > n):
Hs(m,n) = T(m + 2n) - 3T(n) + 3n Hs*(m,n) = Hs(m,n) - 3(m + n)
e.g. Hs(m=2,n=1):
__ / \ m=2 / \ \____/ n=1
Hs | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 24 | 39 | 57 | 78 | 102 | 129 | 159 | 192 | 228 | 267 | 309 | 354 | 402 | 453 |
2 | ... | 63 | 87 | 114 | 144 | 177 | 213 | 252 | 294 | 339 | 387 | 438 | 492 | 549 |
3 | ... | ... | 120 | 153 | 189 | 228 | 270 | 315 | 363 | 414 | 468 | 525 | 585 | 648 |
4 | ... | ... | ... | 195 | 237 | 282 | 330 | 381 | 435 | 492 | 552 | 615 | 681 | 750 |
5 | ... | ... | ... | ... | 288 | 339 | 393 | 450 | 510 | 573 | 639 | 708 | 780 | 855 |
6 | ... | ... | ... | ... | ... | 399 | 459 | 522 | 588 | 657 | 729 | 804 | 882 | 963 |
7 | ... | ... | ... | ... | ... | ... | 528 | 597 | 669 | 744 | 822 | 903 | 987 | 1074 |
8 | ... | ... | ... | ... | ... | ... | ... | 675 | 753 | 834 | 918 | 1005 | 1095 | 1188 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 840 | 927 | 1017 | 1110 | 1206 | 1305 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1023 | 1119 | 1218 | 1320 | 1425 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1224 | 1329 | 1437 | 1548 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1443 | 1557 | 1674 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1680 | 1803 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1935 |
Hs* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 15 | 27 | 42 | 60 | 81 | 105 | 132 | 162 | 195 | 231 | 270 | 312 | 357 | 405 |
2 | ... | 48 | 69 | 93 | 120 | 150 | 183 | 219 | 258 | 300 | 345 | 393 | 444 | 498 |
3 | ... | ... | 99 | 129 | 162 | 198 | 237 | 279 | 324 | 372 | 423 | 477 | 534 | 594 |
4 | ... | ... | ... | 168 | 207 | 249 | 294 | 342 | 393 | 447 | 504 | 564 | 627 | 693 |
5 | ... | ... | ... | ... | 255 | 303 | 354 | 408 | 465 | 525 | 588 | 654 | 723 | 795 |
6 | ... | ... | ... | ... | ... | 360 | 417 | 477 | 540 | 606 | 675 | 747 | 822 | 900 |
7 | ... | ... | ... | ... | ... | ... | 483 | 549 | 618 | 690 | 765 | 843 | 924 | 1008 |
8 | ... | ... | ... | ... | ... | ... | ... | 624 | 699 | 777 | 858 | 942 | 1029 | 1119 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 783 | 867 | 954 | 1044 | 1137 | 1233 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 960 | 1053 | 1149 | 1248 | 1350 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1155 | 1257 | 1362 | 1470 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1368 | 1479 | 1593 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1599 | 1719 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1848 |
Parallelograms & holes:
P(m,n) = 3mn + m + n P*(m,n) = 3mn - (m + n)
e.g. P(m=4,n=2):
________ / / /_______/ n=2 m=4
P | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 5 | 9 | 13 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | 45 | 49 | 53 | 57 | 61 |
2 | ... | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 | 107 |
3 | ... | ... | 33 | 43 | 53 | 63 | 73 | 83 | 93 | 103 | 113 | 123 | 133 | 143 | 153 |
4 | ... | ... | ... | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 | 186 | 199 |
5 | ... | ... | ... | ... | 85 | 101 | 117 | 133 | 149 | 165 | 181 | 197 | 213 | 229 | 245 |
6 | ... | ... | ... | ... | ... | 120 | 139 | 158 | 177 | 196 | 215 | 234 | 253 | 272 | 291 |
7 | ... | ... | ... | ... | ... | ... | 161 | 183 | 205 | 227 | 249 | 271 | 293 | 315 | 337 |
8 | ... | ... | ... | ... | ... | ... | ... | 208 | 233 | 258 | 283 | 308 | 333 | 358 | 383 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 261 | 289 | 317 | 345 | 373 | 401 | 429 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 320 | 351 | 382 | 413 | 444 | 475 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 385 | 419 | 453 | 487 | 521 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 456 | 493 | 530 | 567 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 533 | 573 | 613 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 616 | 659 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 705 |
P* | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 |
2 | ... | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 | 73 |
3 | ... | ... | 21 | 29 | 37 | 45 | 53 | 61 | 69 | 77 | 85 | 93 | 101 | 109 | 117 |
4 | ... | ... | ... | 40 | 51 | 62 | 73 | 84 | 95 | 106 | 117 | 128 | 139 | 150 | 161 |
5 | ... | ... | ... | ... | 65 | 79 | 93 | 107 | 121 | 135 | 149 | 163 | 177 | 191 | 205 |
6 | ... | ... | ... | ... | ... | 96 | 113 | 130 | 147 | 164 | 181 | 198 | 215 | 232 | 249 |
7 | ... | ... | ... | ... | ... | ... | 133 | 153 | 173 | 193 | 213 | 233 | 253 | 273 | 293 |
8 | ... | ... | ... | ... | ... | ... | ... | 176 | 199 | 222 | 245 | 268 | 291 | 314 | 337 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 225 | 251 | 277 | 303 | 329 | 355 | 381 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 280 | 309 | 338 | 367 | 396 | 425 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 341 | 373 | 405 | 437 | 469 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 408 | 443 | 478 | 513 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 481 | 519 | 557 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 560 | 601 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 645 |
Trapezoids & holes:
Tr(m,n) = (6mn - 3n² + 2m + n)/2 Tr*(m,n) = Tr(m,n) - 2m - n
e.g. T(m=4,n=2):
____ / \ n=2 /______\ m=4
Tr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 7 | 11 | 15 | 19 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 |
2 | ... | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 | 107 |
3 | ... | ... | 28 | 38 | 48 | 58 | 68 | 78 | 88 | 98 | 108 | 118 | 128 | 138 | 148 |
4 | ... | ... | ... | 43 | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 | 186 |
5 | ... | ... | ... | ... | 61 | 77 | 93 | 109 | 125 | 141 | 157 | 173 | 189 | 205 | 221 |
6 | ... | ... | ... | ... | ... | 82 | 101 | 120 | 139 | 158 | 177 | 196 | 215 | 234 | 253 |
7 | ... | ... | ... | ... | ... | ... | 106 | 128 | 150 | 172 | 194 | 216 | 238 | 260 | 282 |
8 | ... | ... | ... | ... | ... | ... | ... | 133 | 158 | 183 | 208 | 233 | 258 | 283 | 308 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 163 | 191 | 219 | 247 | 275 | 303 | 331 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 196 | 227 | 258 | 289 | 320 | 351 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 232 | 266 | 300 | 334 | 368 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 271 | 308 | 345 | 382 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 313 | 353 | 393 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 358 | 401 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 406 |
Tr* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
2 | ... | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 | 73 |
3 | ... | ... | 17 | 25 | 33 | 41 | 49 | 57 | 65 | 73 | 81 | 89 | 97 | 105 | 113 |
4 | ... | ... | ... | 29 | 40 | 51 | 62 | 73 | 84 | 95 | 106 | 117 | 128 | 139 | 150 |
5 | ... | ... | ... | ... | 44 | 58 | 72 | 86 | 100 | 114 | 128 | 142 | 156 | 170 | 184 |
6 | ... | ... | ... | ... | ... | 62 | 79 | 96 | 113 | 130 | 147 | 164 | 181 | 198 | 215 |
7 | ... | ... | ... | ... | ... | ... | 83 | 103 | 123 | 143 | 163 | 183 | 203 | 223 | 243 |
8 | ... | ... | ... | ... | ... | ... | ... | 107 | 130 | 153 | 176 | 199 | 222 | 245 | 268 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 134 | 160 | 186 | 212 | 238 | 264 | 290 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 164 | 193 | 222 | 251 | 280 | 309 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 197 | 229 | 261 | 293 | 325 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 233 | 268 | 303 | 338 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 272 | 310 | 348 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 314 | 355 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 359 |
Chevrons & holes:
C(m,n) = 6mn + m + 2n C*(m,n) = 6mn - (m + 2n)
Chevrons == parallelograms:
C(m,n) == P(m,2n)
e.g. C(m=3,n=1):
______ \ \ n=1 /_____/ m=3
C | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 9 | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 |
2 | 17 | 30 | 43 | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 | 186 |
3 | 25 | 44 | 63 | 82 | 101 | 120 | 139 | 158 | 177 | 196 | 215 | 234 | 253 | 272 |
4 | 33 | 58 | 83 | 108 | 133 | 158 | 183 | 208 | 233 | 258 | 283 | 308 | 333 | 358 |
5 | 41 | 72 | 103 | 134 | 165 | 196 | 227 | 258 | 289 | 320 | 351 | 382 | 413 | 444 |
6 | 49 | 86 | 123 | 160 | 197 | 234 | 271 | 308 | 345 | 382 | 419 | 456 | 493 | 530 |
7 | 57 | 100 | 143 | 186 | 229 | 272 | 315 | 358 | 401 | 444 | 487 | 530 | 573 | 616 |
8 | 65 | 114 | 163 | 212 | 261 | 310 | 359 | 408 | 457 | 506 | 555 | 604 | 653 | 702 |
9 | 73 | 128 | 183 | 238 | 293 | 348 | 403 | 458 | 513 | 568 | 623 | 678 | 733 | 788 |
10 | 81 | 142 | 203 | 264 | 325 | 386 | 447 | 508 | 569 | 630 | 691 | 752 | 813 | 874 |
11 | 89 | 156 | 223 | 290 | 357 | 424 | 491 | 558 | 625 | 692 | 759 | 826 | 893 | 960 |
12 | 97 | 170 | 243 | 316 | 389 | 462 | 535 | 608 | 681 | 754 | 827 | 900 | 973 | 1046 |
13 | 105 | 184 | 263 | 342 | 421 | 500 | 579 | 658 | 737 | 816 | 895 | 974 | 1053 | 1132 |
14 | 113 | 198 | 283 | 368 | 453 | 538 | 623 | 708 | 793 | 878 | 963 | 1048 | 1133 | 1218 |
15 | 121 | 212 | 303 | 394 | 485 | 576 | 667 | 758 | 849 | 940 | 1031 | 1122 | 1213 | 1304 |
C* | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 3 | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 |
2 | 7 | 18 | 29 | 40 | 51 | 62 | 73 | 84 | 95 | 106 | 117 | 128 | 139 | 150 |
3 | 11 | 28 | 45 | 62 | 79 | 96 | 113 | 130 | 147 | 164 | 181 | 198 | 215 | 232 |
4 | 15 | 38 | 61 | 84 | 107 | 130 | 153 | 176 | 199 | 222 | 245 | 268 | 291 | 314 |
5 | 19 | 48 | 77 | 106 | 135 | 164 | 193 | 222 | 251 | 280 | 309 | 338 | 367 | 396 |
6 | 23 | 58 | 93 | 128 | 163 | 198 | 233 | 268 | 303 | 338 | 373 | 408 | 443 | 478 |
7 | 27 | 68 | 109 | 150 | 191 | 232 | 273 | 314 | 355 | 396 | 437 | 478 | 519 | 560 |
8 | 31 | 78 | 125 | 172 | 219 | 266 | 313 | 360 | 407 | 454 | 501 | 548 | 595 | 642 |
9 | 35 | 88 | 141 | 194 | 247 | 300 | 353 | 406 | 459 | 512 | 565 | 618 | 671 | 724 |
10 | 39 | 98 | 157 | 216 | 275 | 334 | 393 | 452 | 511 | 570 | 629 | 688 | 747 | 806 |
11 | 43 | 108 | 173 | 238 | 303 | 368 | 433 | 498 | 563 | 628 | 693 | 758 | 823 | 888 |
12 | 47 | 118 | 189 | 260 | 331 | 402 | 473 | 544 | 615 | 686 | 757 | 828 | 899 | 970 |
13 | 51 | 128 | 205 | 282 | 359 | 436 | 513 | 590 | 667 | 744 | 821 | 898 | 975 | 1052 |
14 | 55 | 138 | 221 | 304 | 387 | 470 | 553 | 636 | 719 | 802 | 885 | 968 | 1051 | 1134 |
15 | 59 | 148 | 237 | 326 | 415 | 504 | 593 | 682 | 771 | 860 | 949 | 1038 | 1127 | 1216 |
Butterflies & holes:
B(m,n) = 6mn - 3n² + m + 2n B*(m,n) = B(m,n) - 2m - 4n = 6mn - 3n² - (m + 2n)
e.g. B(m=3,n=1) (m is the length of the base, n is the length of each tilted side):
______ \ / n=1 /____\ m=3
B | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 13 | 20 | 27 | 34 | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | 97 | 104 | 111 |
2 | ... | 31 | 44 | 57 | 70 | 83 | 96 | 109 | 122 | 135 | 148 | 161 | 174 | 187 | 200 |
3 | ... | ... | 55 | 74 | 93 | 112 | 131 | 150 | 169 | 188 | 207 | 226 | 245 | 264 | 283 |
4 | ... | ... | ... | 85 | 110 | 135 | 160 | 185 | 210 | 235 | 260 | 285 | 310 | 335 | 360 |
5 | ... | ... | ... | ... | 121 | 152 | 183 | 214 | 245 | 276 | 307 | 338 | 369 | 400 | 431 |
6 | ... | ... | ... | ... | ... | 163 | 200 | 237 | 274 | 311 | 348 | 385 | 422 | 459 | 496 |
7 | ... | ... | ... | ... | ... | ... | 211 | 254 | 297 | 340 | 383 | 426 | 469 | 512 | 555 |
8 | ... | ... | ... | ... | ... | ... | ... | 265 | 314 | 363 | 412 | 461 | 510 | 559 | 608 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 325 | 380 | 435 | 490 | 545 | 600 | 655 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 391 | 452 | 513 | 574 | 635 | 696 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 463 | 530 | 597 | 664 | 731 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 541 | 614 | 687 | 760 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 625 | 704 | 783 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 715 | 800 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 811 |
B* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
2 | ... | 17 | 28 | 39 | 50 | 61 | 72 | 83 | 94 | 105 | 116 | 127 | 138 | 149 | 160 |
3 | ... | ... | 35 | 52 | 69 | 86 | 103 | 120 | 137 | 154 | 171 | 188 | 205 | 222 | 239 |
4 | ... | ... | ... | 59 | 82 | 105 | 128 | 151 | 174 | 197 | 220 | 243 | 266 | 289 | 312 |
5 | ... | ... | ... | ... | 89 | 118 | 147 | 176 | 205 | 234 | 263 | 292 | 321 | 350 | 379 |
6 | ... | ... | ... | ... | ... | 125 | 160 | 195 | 230 | 265 | 300 | 335 | 370 | 405 | 440 |
7 | ... | ... | ... | ... | ... | ... | 167 | 208 | 249 | 290 | 331 | 372 | 413 | 454 | 495 |
8 | ... | ... | ... | ... | ... | ... | ... | 215 | 262 | 309 | 356 | 403 | 450 | 497 | 544 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 269 | 322 | 375 | 428 | 481 | 534 | 587 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 329 | 388 | 447 | 506 | 565 | 624 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 395 | 460 | 525 | 590 | 655 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 467 | 538 | 609 | 680 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 545 | 622 | 699 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 629 | 712 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 719 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit line segments in the puzzles.
7: polytrigs O(1) + O(2)
18: quasi-ditrigs
19: quasi-polytrigs O(1) + O(2)
24: snake tritrigs
27: unwelded tritrigs
36: tritrigs
42: ditrigs & tritrigs
42: one-sided snake tritrigs
43: polytrigs O(1) + O(2) + O(3)
45: one-sided unwelded tritrigs
49: one-sided snake polytrigs O(1) + O(2) + O(3)
52: one-sided unwelded polytrigs O(1) + O(2) + O(3)
57: one-sided tritrigs
64: one-sided polytrigs O(1) + O(2) + O(3)
128: snake tetratrigs
133: unwelded tetratrigs, including 1 extra segment for hole in O4 (said 1 segment hole must be removed from coordinates)
159: snake polytrigs O(1) + O(2) + O(3) + O(4)
166: unwelded polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)
241: 240+1: tetratrigs, including 1 extra segment for hole in O4 (said 1 segment hole must be removed from coordinates)
265: one-sided snake polytrigs O(1) + O(2) + O(3) + O(4)
272: one-sided unwelded polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)
283: polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)
417: one-sided tetratrigs, including 1 extra segment for hole in O4
420: quasi-tritrigs
439: quasi-polytrigs O(1) + O(2) + O(3)
480: one-sided polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)