Notes on Polytrigs

Author: David Goodger <goodger@python.org>
Date: 2015-02-24
Revision: 600
Web site:http://puzzler.sourceforge.net/
Copyright: © 1998-2015 by David J. Goodger
License:GPL 2
images/puzzler.png

Contents

Polyform Counts

Units are unit line segments on the triangular grid.

The polytrigs (fully-connected):

Order Name Free Units Sum One-sided Units Sum
1 monotrig 1 1 1 1 1 1
2 ditrig 3 6 7 3 6 7
3 tritrig 12 36 43 19 57 64
4* tetratrig 60 240 283 104 416 480
5* pentatrig 375 1875   719 3595  

The quasi-polytrigs (includes disconnected forms that have gaps of maximum length 1):

Order Name Free Units Sum One-sided Units Sum
1 quasi-monotrig 1 1 1 1 1 1
2 quasi-ditrig 9 18 19 13 26 27
3 quasi-tritrig 140 420 439 259 777 804
4* quasi-tetratrig 3377     6639    

"*" above means that pieces with enclosed holes exist.

Shapes

Holes (denoted by a "*" in the function name) consist of internal segments only, no circumference segments.

Triangles & holes:

T(n) = 3n(n + 1)/2

T*(n) = T(n) - 3n = T(n - 1)

e.g T(n=2) (n is the length of each side):

 /\ n=2
/__\

Hexagons & holes:

H(n) = 3n(3n + 1) = 6(T(n) - n)

H*(n) = H(n) - 6n = 3n(3n - 1)

e.g. H(2):

  ____
 /    \ n=2
/      \
\      /
 \____/

Hexagrams & holes:

Hg(n) = H(n) + 6T(n) - 6n
      = 6n(3n + 1)

Hg*(n) = Hg(n) - 12n
       = 6n(3n - 1)

e.g. Hg(n=2):

     /\ n=2
____/  \____
\          /
 \        /
 /        \
/___    ___\
    \  /
     \/
n T T* H H* Hg Hg*
1 3 0 12 6 24 12
2 9 3 42 30 84 60
3 18 9 90 72 180 144
4 30 18 156 132 312 264
5 45 30 240 210 480 420
6 63 45 342 306 684 612
7 84 63 462 420 924 840
8 108 84 600 552 1200 1104
9 135 108 756 702 1512 1404
10 165 135 930 870 1860 1740
11 198 165 1122 1056 2244 2112
12 234 198 1332 1260 2664 2520
13 273 234 1560 1482 3120 2964
14 315 273 1806 1722 3612 3444
15 360 315 2070 1980 4140 3960
16 408 360 2352 2256 4704 4512
17 459 408 2652 2550 5304 5100
18 513 459 2970 2862 5940 5724
19 570 513 3306 3192 6612 6384
20 630 570 3660 3540 7320 7080

Elongated hexagons & holes:

He(m,n) = H(n) + (m - n)(6n + 1)
        = 3n² + 6mn + m + 2n

He*(m,n) = He(m,n) - 2m - 4n
         = 3n² + 6mn - m - 2n

When n==m:

He(n,n) == H(n)
He*(n,n) == H*(n)

e.g He(m=6,n=2) (m is the width of the bottom and n is the length of each of the near-vertical sides, not the overall height or width):

  ____________
 /            \ n=2
/              \
\              /
 \____________/
   m=6
He m=1 2 3 4 5 6 7 8 9 10 11 12 13
n=1 12 19 26 33 40 47 54 61 68 75 82 89 96
2 29 42 55 68 81 94 107 120 133 146 159 172 185
3 52 71 90 109 128 147 166 185 204 223 242 261 280
4 81 106 131 156 181 206 231 256 281 306 331 356 381
5 116 147 178 209 240 271 302 333 364 395 426 457 488
6 157 194 231 268 305 342 379 416 453 490 527 564 601
7 204 247 290 333 376 419 462 505 548 591 634 677 720
8 257 306 355 404 453 502 551 600 649 698 747 796 845
9 316 371 426 481 536 591 646 701 756 811 866 921 976
10 381 442 503 564 625 686 747 808 869 930 991 1052 1113
11 452 519 586 653 720 787 854 921 988 1055 1122 1189 1256
12 529 602 675 748 821 894 967 1040 1113 1186 1259 1332 1405
13 612 691 770 849 928 1007 1086 1165 1244 1323 1402 1481 1560
14 701 786 871 956 1041 1126 1211 1296 1381 1466 1551 1636 1721
15 796 887 978 1069 1160 1251 1342 1433 1524 1615 1706 1797 1888
He* m=1 2 3 4 5 6 7 8 9 10 11 12 13
n=1 6 11 16 21 26 31 36 41 46 51 56 61 66
2 19 30 41 52 63 74 85 96 107 118 129 140 151
3 38 55 72 89 106 123 140 157 174 191 208 225 242
4 63 86 109 132 155 178 201 224 247 270 293 316 339
5 94 123 152 181 210 239 268 297 326 355 384 413 442
6 131 166 201 236 271 306 341 376 411 446 481 516 551
7 174 215 256 297 338 379 420 461 502 543 584 625 666
8 223 270 317 364 411 458 505 552 599 646 693 740 787
9 278 331 384 437 490 543 596 649 702 755 808 861 914
10 339 398 457 516 575 634 693 752 811 870 929 988 1047
11 406 471 536 601 666 731 796 861 926 991 1056 1121 1186
12 479 550 621 692 763 834 905 976 1047 1118 1189 1260 1331
13 558 635 712 789 866 943 1020 1097 1174 1251 1328 1405 1482
14 643 726 809 892 975 1058 1141 1224 1307 1390 1473 1556 1639
15 734 823 912 1001 1090 1179 1268 1357 1446 1535 1624 1713 1802

Semi-regular hexagons (two different side lengths, alternating; == truncated triangles) & holes (m > n):

Hs(m,n) = T(m + 2n) - 3T(n) + 3n

Hs*(m,n) = Hs(m,n) - 3(m + n)

e.g. Hs(m=2,n=1):

  __
 /  \ m=2
/    \
\____/ n=1
Hs m=2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 24 39 57 78 102 129 159 192 228 267 309 354 402 453
2 ... 63 87 114 144 177 213 252 294 339 387 438 492 549
3 ... ... 120 153 189 228 270 315 363 414 468 525 585 648
4 ... ... ... 195 237 282 330 381 435 492 552 615 681 750
5 ... ... ... ... 288 339 393 450 510 573 639 708 780 855
6 ... ... ... ... ... 399 459 522 588 657 729 804 882 963
7 ... ... ... ... ... ... 528 597 669 744 822 903 987 1074
8 ... ... ... ... ... ... ... 675 753 834 918 1005 1095 1188
9 ... ... ... ... ... ... ... ... 840 927 1017 1110 1206 1305
10 ... ... ... ... ... ... ... ... ... 1023 1119 1218 1320 1425
11 ... ... ... ... ... ... ... ... ... ... 1224 1329 1437 1548
12 ... ... ... ... ... ... ... ... ... ... ... 1443 1557 1674
13 ... ... ... ... ... ... ... ... ... ... ... ... 1680 1803
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 1935
Hs* m=2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 15 27 42 60 81 105 132 162 195 231 270 312 357 405
2 ... 48 69 93 120 150 183 219 258 300 345 393 444 498
3 ... ... 99 129 162 198 237 279 324 372 423 477 534 594
4 ... ... ... 168 207 249 294 342 393 447 504 564 627 693
5 ... ... ... ... 255 303 354 408 465 525 588 654 723 795
6 ... ... ... ... ... 360 417 477 540 606 675 747 822 900
7 ... ... ... ... ... ... 483 549 618 690 765 843 924 1008
8 ... ... ... ... ... ... ... 624 699 777 858 942 1029 1119
9 ... ... ... ... ... ... ... ... 783 867 954 1044 1137 1233
10 ... ... ... ... ... ... ... ... ... 960 1053 1149 1248 1350
11 ... ... ... ... ... ... ... ... ... ... 1155 1257 1362 1470
12 ... ... ... ... ... ... ... ... ... ... ... 1368 1479 1593
13 ... ... ... ... ... ... ... ... ... ... ... ... 1599 1719
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 1848

Parallelograms & holes:

P(m,n) = 3mn + m + n

P*(m,n) = 3mn - (m + n)

e.g. P(m=4,n=2):

  ________
 /       /
/_______/ n=2
  m=4
P m=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
2 ... 16 23 30 37 44 51 58 65 72 79 86 93 100 107
3 ... ... 33 43 53 63 73 83 93 103 113 123 133 143 153
4 ... ... ... 56 69 82 95 108 121 134 147 160 173 186 199
5 ... ... ... ... 85 101 117 133 149 165 181 197 213 229 245
6 ... ... ... ... ... 120 139 158 177 196 215 234 253 272 291
7 ... ... ... ... ... ... 161 183 205 227 249 271 293 315 337
8 ... ... ... ... ... ... ... 208 233 258 283 308 333 358 383
9 ... ... ... ... ... ... ... ... 261 289 317 345 373 401 429
10 ... ... ... ... ... ... ... ... ... 320 351 382 413 444 475
11 ... ... ... ... ... ... ... ... ... ... 385 419 453 487 521
12 ... ... ... ... ... ... ... ... ... ... ... 456 493 530 567
13 ... ... ... ... ... ... ... ... ... ... ... ... 533 573 613
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 616 659
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 705
P* m=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
2 ... 8 13 18 23 28 33 38 43 48 53 58 63 68 73
3 ... ... 21 29 37 45 53 61 69 77 85 93 101 109 117
4 ... ... ... 40 51 62 73 84 95 106 117 128 139 150 161
5 ... ... ... ... 65 79 93 107 121 135 149 163 177 191 205
6 ... ... ... ... ... 96 113 130 147 164 181 198 215 232 249
7 ... ... ... ... ... ... 133 153 173 193 213 233 253 273 293
8 ... ... ... ... ... ... ... 176 199 222 245 268 291 314 337
9 ... ... ... ... ... ... ... ... 225 251 277 303 329 355 381
10 ... ... ... ... ... ... ... ... ... 280 309 338 367 396 425
11 ... ... ... ... ... ... ... ... ... ... 341 373 405 437 469
12 ... ... ... ... ... ... ... ... ... ... ... 408 443 478 513
13 ... ... ... ... ... ... ... ... ... ... ... ... 481 519 557
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 560 601
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 645

Trapezoids & holes:

Tr(m,n) = (6mn - 3n² + 2m + n)/2

Tr*(m,n) = Tr(m,n) - 2m - n

e.g. T(m=4,n=2):

  ____
 /    \ n=2
/______\
  m=4
Tr m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63
2 ... 16 23 30 37 44 51 58 65 72 79 86 93 100 107
3 ... ... 28 38 48 58 68 78 88 98 108 118 128 138 148
4 ... ... ... 43 56 69 82 95 108 121 134 147 160 173 186
5 ... ... ... ... 61 77 93 109 125 141 157 173 189 205 221
6 ... ... ... ... ... 82 101 120 139 158 177 196 215 234 253
7 ... ... ... ... ... ... 106 128 150 172 194 216 238 260 282
8 ... ... ... ... ... ... ... 133 158 183 208 233 258 283 308
9 ... ... ... ... ... ... ... ... 163 191 219 247 275 303 331
10 ... ... ... ... ... ... ... ... ... 196 227 258 289 320 351
11 ... ... ... ... ... ... ... ... ... ... 232 266 300 334 368
12 ... ... ... ... ... ... ... ... ... ... ... 271 308 345 382
13 ... ... ... ... ... ... ... ... ... ... ... ... 313 353 393
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 358 401
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 406
Tr* m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2 ... 8 13 18 23 28 33 38 43 48 53 58 63 68 73
3 ... ... 17 25 33 41 49 57 65 73 81 89 97 105 113
4 ... ... ... 29 40 51 62 73 84 95 106 117 128 139 150
5 ... ... ... ... 44 58 72 86 100 114 128 142 156 170 184
6 ... ... ... ... ... 62 79 96 113 130 147 164 181 198 215
7 ... ... ... ... ... ... 83 103 123 143 163 183 203 223 243
8 ... ... ... ... ... ... ... 107 130 153 176 199 222 245 268
9 ... ... ... ... ... ... ... ... 134 160 186 212 238 264 290
10 ... ... ... ... ... ... ... ... ... 164 193 222 251 280 309
11 ... ... ... ... ... ... ... ... ... ... 197 229 261 293 325
12 ... ... ... ... ... ... ... ... ... ... ... 233 268 303 338
13 ... ... ... ... ... ... ... ... ... ... ... ... 272 310 348
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 314 355
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 359

Chevrons & holes:

C(m,n) = 6mn + m + 2n

C*(m,n) = 6mn - (m + 2n)

Chevrons == parallelograms:

C(m,n) == P(m,2n)

e.g. C(m=3,n=1):

______
\     \ n=1
/_____/
  m=3
C m=1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=1 9 16 23 30 37 44 51 58 65 72 79 86 93 100
2 17 30 43 56 69 82 95 108 121 134 147 160 173 186
3 25 44 63 82 101 120 139 158 177 196 215 234 253 272
4 33 58 83 108 133 158 183 208 233 258 283 308 333 358
5 41 72 103 134 165 196 227 258 289 320 351 382 413 444
6 49 86 123 160 197 234 271 308 345 382 419 456 493 530
7 57 100 143 186 229 272 315 358 401 444 487 530 573 616
8 65 114 163 212 261 310 359 408 457 506 555 604 653 702
9 73 128 183 238 293 348 403 458 513 568 623 678 733 788
10 81 142 203 264 325 386 447 508 569 630 691 752 813 874
11 89 156 223 290 357 424 491 558 625 692 759 826 893 960
12 97 170 243 316 389 462 535 608 681 754 827 900 973 1046
13 105 184 263 342 421 500 579 658 737 816 895 974 1053 1132
14 113 198 283 368 453 538 623 708 793 878 963 1048 1133 1218
15 121 212 303 394 485 576 667 758 849 940 1031 1122 1213 1304
C* m=1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=1 3 8 13 18 23 28 33 38 43 48 53 58 63 68
2 7 18 29 40 51 62 73 84 95 106 117 128 139 150
3 11 28 45 62 79 96 113 130 147 164 181 198 215 232
4 15 38 61 84 107 130 153 176 199 222 245 268 291 314
5 19 48 77 106 135 164 193 222 251 280 309 338 367 396
6 23 58 93 128 163 198 233 268 303 338 373 408 443 478
7 27 68 109 150 191 232 273 314 355 396 437 478 519 560
8 31 78 125 172 219 266 313 360 407 454 501 548 595 642
9 35 88 141 194 247 300 353 406 459 512 565 618 671 724
10 39 98 157 216 275 334 393 452 511 570 629 688 747 806
11 43 108 173 238 303 368 433 498 563 628 693 758 823 888
12 47 118 189 260 331 402 473 544 615 686 757 828 899 970
13 51 128 205 282 359 436 513 590 667 744 821 898 975 1052
14 55 138 221 304 387 470 553 636 719 802 885 968 1051 1134
15 59 148 237 326 415 504 593 682 771 860 949 1038 1127 1216

Butterflies & holes:

B(m,n) = 6mn - 3n² + m + 2n

B*(m,n) = B(m,n) - 2m - 4n
        = 6mn - 3n² - (m + 2n)

e.g. B(m=3,n=1) (m is the length of the base, n is the length of each tilted side):

______
\    / n=1
/____\
  m=3
B m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1 13 20 27 34 41 48 55 62 69 76 83 90 97 104 111
2 ... 31 44 57 70 83 96 109 122 135 148 161 174 187 200
3 ... ... 55 74 93 112 131 150 169 188 207 226 245 264 283
4 ... ... ... 85 110 135 160 185 210 235 260 285 310 335 360
5 ... ... ... ... 121 152 183 214 245 276 307 338 369 400 431
6 ... ... ... ... ... 163 200 237 274 311 348 385 422 459 496
7 ... ... ... ... ... ... 211 254 297 340 383 426 469 512 555
8 ... ... ... ... ... ... ... 265 314 363 412 461 510 559 608
9 ... ... ... ... ... ... ... ... 325 380 435 490 545 600 655
10 ... ... ... ... ... ... ... ... ... 391 452 513 574 635 696
11 ... ... ... ... ... ... ... ... ... ... 463 530 597 664 731
12 ... ... ... ... ... ... ... ... ... ... ... 541 614 687 760
13 ... ... ... ... ... ... ... ... ... ... ... ... 625 704 783
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 715 800
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 811
B* m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
2 ... 17 28 39 50 61 72 83 94 105 116 127 138 149 160
3 ... ... 35 52 69 86 103 120 137 154 171 188 205 222 239
4 ... ... ... 59 82 105 128 151 174 197 220 243 266 289 312
5 ... ... ... ... 89 118 147 176 205 234 263 292 321 350 379
6 ... ... ... ... ... 125 160 195 230 265 300 335 370 405 440
7 ... ... ... ... ... ... 167 208 249 290 331 372 413 454 495
8 ... ... ... ... ... ... ... 215 262 309 356 403 450 497 544
9 ... ... ... ... ... ... ... ... 269 322 375 428 481 534 587
10 ... ... ... ... ... ... ... ... ... 329 388 447 506 565 624
11 ... ... ... ... ... ... ... ... ... ... 395 460 525 590 655
12 ... ... ... ... ... ... ... ... ... ... ... 467 538 609 680
13 ... ... ... ... ... ... ... ... ... ... ... ... 545 622 699
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 629 712
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 719

Potential Puzzles

Puzzles not otherwise noted below have not been implemented or solved.

Initial numbers are the counts of unit line segments in the puzzles.

7: polytrigs O(1) + O(2)

18: quasi-ditrigs

19: quasi-polytrigs O(1) + O(2)

24: snake tritrigs

27: unwelded tritrigs

36: tritrigs

42: ditrigs & tritrigs

42: one-sided snake tritrigs

43: polytrigs O(1) + O(2) + O(3)

45: one-sided unwelded tritrigs

49: one-sided snake polytrigs O(1) + O(2) + O(3)

52: one-sided unwelded polytrigs O(1) + O(2) + O(3)

57: one-sided tritrigs

64: one-sided polytrigs O(1) + O(2) + O(3)

128: snake tetratrigs

133: unwelded tetratrigs, including 1 extra segment for hole in O4 (said 1 segment hole must be removed from coordinates)

159: snake polytrigs O(1) + O(2) + O(3) + O(4)

166: unwelded polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)

241: 240+1: tetratrigs, including 1 extra segment for hole in O4 (said 1 segment hole must be removed from coordinates)

265: one-sided snake polytrigs O(1) + O(2) + O(3) + O(4)

272: one-sided unwelded polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)

283: polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)

417: one-sided tetratrigs, including 1 extra segment for hole in O4

420: quasi-tritrigs

439: quasi-polytrigs O(1) + O(2) + O(3)

480: one-sided polytrigs O(1) + O(2) + O(3) + O(4) (hole in O4 filled by I1)

Misc