Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2015-02-24 |
Revision: | 600 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are unit line segments on the hexagonal grid.
The polytwigs (fully-connected):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | monotwig | 1 | 1 | 1 | 1 | 1 | 1 |
2 | ditwig | 1 | 2 | 3 | 1 | 2 | 3 |
3 | tritwig | 3 | 9 | 12 | 4 | 12 | 15 |
4 | tetratwig | 4 | 16 | 28 | 6 | 24 | 39 |
5 | pentatwig | 12 | 60 | 88 | 19 | 95 | 134 |
6 | hexatwig | 27 | 162 | 250 | 49 | 294 | 428 |
7 | heptatwig | 78 | 546 | 796 | 143 | 1001 | 1429 |
The quasi-polytwigs (includes disconnected forms that have gaps of maximum length 1):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | quasi-monotwig | 1 | 1 | 1 | 1 | 1 | 1 |
2 | quasi-ditwig | 3 | 6 | 7 | 4 | 8 | 9 |
3 | quasi-tritwig | 17 | 51 | 58 | 28 | 84 | 93 |
4 | quasi-tetratwig | 114 | 456 | 514 | 214 | 856 | 949 |
5 | quasi-pentatwig | 966 | 1885 |
Holes (denoted by a "*" in the function name) consist of internal segments only, no circumference segments.
Hexagons & holes:
H(n) = 9n² - 3n = 3n(3n - 1) H*(n) = H(n) - 12n + 6 = 9n² - 15n + 6
Triangles & holes:
T(n) = 3n/2(n + 3) = 3/2(n² + 3n) T*(n) = T(n) - 6n = 3n/2(n - 1) = 3/2(n² - n)
Hexagrams & holes:
Hg(n) = H(n) + 6T(n - 1) - 12(n - 1) = 18n² - 6n - 6 Hg*(n) = Hg(n) - 24n + 18 = 18n² - 30n + 12
n | H | H* | T | T* | Hg | Hg* |
---|---|---|---|---|---|---|
1 | 6 | 0 | 6 | 0 | 6 | 0 |
2 | 30 | 12 | 15 | 3 | 54 | 24 |
3 | 72 | 42 | 27 | 9 | 138 | 84 |
4 | 132 | 90 | 42 | 18 | 258 | 180 |
5 | 210 | 156 | 60 | 30 | 414 | 312 |
6 | 306 | 240 | 81 | 45 | 606 | 480 |
7 | 420 | 342 | 105 | 63 | 834 | 684 |
8 | 552 | 462 | 132 | 84 | 1098 | 924 |
9 | 702 | 600 | 162 | 108 | 1398 | 1200 |
10 | 870 | 756 | 195 | 135 | 1734 | 1512 |
11 | 1056 | 930 | 231 | 165 | 2106 | 1860 |
12 | 1260 | 1122 | 270 | 198 | 2514 | 2244 |
13 | 1482 | 1332 | 312 | 234 | 2958 | 2664 |
14 | 1722 | 1560 | 357 | 273 | 3438 | 3120 |
15 | 1980 | 1806 | 405 | 315 | 3954 | 3612 |
16 | 2256 | 2070 | 456 | 360 | 4506 | 4140 |
17 | 2550 | 2352 | 510 | 408 | 5094 | 4704 |
18 | 2862 | 2652 | 567 | 459 | 5718 | 5304 |
19 | 3192 | 2970 | 627 | 513 | 6378 | 5940 |
20 | 3540 | 3306 | 690 | 570 | 7074 | 6612 |
Parallelograms (& staggered rectangles) & holes:
P(m,n) = 3mn + 2(m + n) - 1 Rs(m,n) = P(m,n) P*(m,n) = P(m,n) - 4(m + n) + 2 = 3mn - 2(m + n) + 1
P | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 |
2 | ... | 19 | 27 | 35 | 43 | 51 | 59 | 67 | 75 | 83 | 91 | 99 | 107 | 115 | 123 |
3 | ... | ... | 38 | 49 | 60 | 71 | 82 | 93 | 104 | 115 | 126 | 137 | 148 | 159 | 170 |
4 | ... | ... | ... | 63 | 77 | 91 | 105 | 119 | 133 | 147 | 161 | 175 | 189 | 203 | 217 |
5 | ... | ... | ... | ... | 94 | 111 | 128 | 145 | 162 | 179 | 196 | 213 | 230 | 247 | 264 |
6 | ... | ... | ... | ... | ... | 131 | 151 | 171 | 191 | 211 | 231 | 251 | 271 | 291 | 311 |
7 | ... | ... | ... | ... | ... | ... | 174 | 197 | 220 | 243 | 266 | 289 | 312 | 335 | 358 |
8 | ... | ... | ... | ... | ... | ... | ... | 223 | 249 | 275 | 301 | 327 | 353 | 379 | 405 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 278 | 307 | 336 | 365 | 394 | 423 | 452 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 339 | 371 | 403 | 435 | 467 | 499 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 406 | 441 | 476 | 511 | 546 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 479 | 517 | 555 | 593 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 558 | 599 | 640 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 643 | 687 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 734 |
P* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | 5 | 9 | 13 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | 45 | 49 | 53 | 57 | 61 |
3 | ... | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 | 107 |
4 | ... | ... | 33 | 43 | 53 | 63 | 73 | 83 | 93 | 103 | 113 | 123 | 133 | 143 | 153 |
5 | ... | ... | ... | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 | 186 | 199 |
6 | ... | ... | ... | ... | 85 | 101 | 117 | 133 | 149 | 165 | 181 | 197 | 213 | 229 | 245 |
7 | ... | ... | ... | ... | ... | 120 | 139 | 158 | 177 | 196 | 215 | 234 | 253 | 272 | 291 |
8 | ... | ... | ... | ... | ... | ... | 161 | 183 | 205 | 227 | 249 | 271 | 293 | 315 | 337 |
9 | ... | ... | ... | ... | ... | ... | ... | 208 | 233 | 258 | 283 | 308 | 333 | 358 | 383 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 261 | 289 | 317 | 345 | 373 | 401 | 429 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 320 | 351 | 382 | 413 | 444 | 475 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 385 | 419 | 453 | 487 | 521 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 456 | 493 | 530 | 567 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 533 | 573 | 613 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 616 | 659 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 705 |
Inset rectangles:
Ri(m,n) = P(m,n) - 3 * int(m / 2) - 1 + (m % 2)
Ri | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 7 | 13 | 14 | 20 | 21 | 27 | 28 | 34 | 35 | 41 | 42 | 48 | 49 | 55 | 56 |
2 | 15 | 24 | 28 | 37 | 41 | 50 | 54 | 63 | 67 | 76 | 80 | 89 | 93 | 102 | 106 |
3 | ... | 35 | 42 | 54 | 61 | 73 | 80 | 92 | 99 | 111 | 118 | 130 | 137 | 149 | 156 |
4 | ... | ... | 56 | 71 | 81 | 96 | 106 | 121 | 131 | 146 | 156 | 171 | 181 | 196 | 206 |
5 | ... | ... | ... | 88 | 101 | 119 | 132 | 150 | 163 | 181 | 194 | 212 | 225 | 243 | 256 |
6 | ... | ... | ... | ... | 121 | 142 | 158 | 179 | 195 | 216 | 232 | 253 | 269 | 290 | 306 |
7 | ... | ... | ... | ... | ... | 165 | 184 | 208 | 227 | 251 | 270 | 294 | 313 | 337 | 356 |
8 | ... | ... | ... | ... | ... | ... | 210 | 237 | 259 | 286 | 308 | 335 | 357 | 384 | 406 |
9 | ... | ... | ... | ... | ... | ... | ... | 266 | 291 | 321 | 346 | 376 | 401 | 431 | 456 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 323 | 356 | 384 | 417 | 445 | 478 | 506 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 391 | 422 | 458 | 489 | 525 | 556 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 460 | 499 | 533 | 572 | 606 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 540 | 577 | 619 | 656 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 621 | 666 | 706 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 713 | 756 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 806 |
Rounded inset rectangles (inset rectangles that start with the short column; identical [but flipped] for even m):
Rr(m,n) = Ri(m,n) - (5 * (m % 2))
Rr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 7 | 8 | 14 | 15 | 21 | 22 | 28 | 29 | 35 | 36 | 42 | 43 | 49 | 50 | 56 |
2 | 15 | 19 | 28 | 32 | 41 | 45 | 54 | 58 | 67 | 71 | 80 | 84 | 93 | 97 | 106 |
3 | ... | 30 | 42 | 49 | 61 | 68 | 80 | 87 | 99 | 106 | 118 | 125 | 137 | 144 | 156 |
4 | ... | ... | 56 | 66 | 81 | 91 | 106 | 116 | 131 | 141 | 156 | 166 | 181 | 191 | 206 |
5 | ... | ... | ... | 83 | 101 | 114 | 132 | 145 | 163 | 176 | 194 | 207 | 225 | 238 | 256 |
6 | ... | ... | ... | ... | 121 | 137 | 158 | 174 | 195 | 211 | 232 | 248 | 269 | 285 | 306 |
7 | ... | ... | ... | ... | ... | 160 | 184 | 203 | 227 | 246 | 270 | 289 | 313 | 332 | 356 |
8 | ... | ... | ... | ... | ... | ... | 210 | 232 | 259 | 281 | 308 | 330 | 357 | 379 | 406 |
9 | ... | ... | ... | ... | ... | ... | ... | 261 | 291 | 316 | 346 | 371 | 401 | 426 | 456 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 323 | 351 | 384 | 412 | 445 | 473 | 506 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 386 | 422 | 453 | 489 | 520 | 556 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 460 | 494 | 533 | 567 | 606 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 535 | 577 | 614 | 656 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 621 | 661 | 706 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 708 | 756 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 806 |
Trapezoids & holes:
Tr(m,n) = m(3n + 2) - n(3n - 5)/2 Tr*(m,n) = Tr(m,n) - 2m - 4n - 2(m - n) = m(3n - 2) - n(3n - 1)/2
Tr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 | 81 |
2 | ... | 23 | 31 | 39 | 47 | 55 | 63 | 71 | 79 | 87 | 95 | 103 | 111 | 119 | 127 |
3 | ... | ... | 38 | 49 | 60 | 71 | 82 | 93 | 104 | 115 | 126 | 137 | 148 | 159 | 170 |
4 | ... | ... | ... | 56 | 70 | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 |
5 | ... | ... | ... | ... | 77 | 94 | 111 | 128 | 145 | 162 | 179 | 196 | 213 | 230 | 247 |
6 | ... | ... | ... | ... | ... | 101 | 121 | 141 | 161 | 181 | 201 | 221 | 241 | 261 | 281 |
7 | ... | ... | ... | ... | ... | ... | 128 | 151 | 174 | 197 | 220 | 243 | 266 | 289 | 312 |
8 | ... | ... | ... | ... | ... | ... | ... | 158 | 184 | 210 | 236 | 262 | 288 | 314 | 340 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 191 | 220 | 249 | 278 | 307 | 336 | 365 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 227 | 259 | 291 | 323 | 355 | 387 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 266 | 301 | 336 | 371 | 406 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 308 | 346 | 384 | 422 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 353 | 394 | 435 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 401 | 445 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 452 |
Tr* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | ... | 7 | 11 | 15 | 19 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 |
3 | ... | ... | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 |
4 | ... | ... | ... | 28 | 38 | 48 | 58 | 68 | 78 | 88 | 98 | 108 | 118 | 128 | 138 |
5 | ... | ... | ... | ... | 43 | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 |
6 | ... | ... | ... | ... | ... | 61 | 77 | 93 | 109 | 125 | 141 | 157 | 173 | 189 | 205 |
7 | ... | ... | ... | ... | ... | ... | 82 | 101 | 120 | 139 | 158 | 177 | 196 | 215 | 234 |
8 | ... | ... | ... | ... | ... | ... | ... | 106 | 128 | 150 | 172 | 194 | 216 | 238 | 260 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 133 | 158 | 183 | 208 | 233 | 258 | 283 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 163 | 191 | 219 | 247 | 275 | 303 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 196 | 227 | 258 | 289 | 320 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 232 | 266 | 300 | 334 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 271 | 308 | 345 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 313 | 353 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 358 |
Elongated hexagons & holes:
He(m,n) = H(n) + (m - n)(6n - 1) = 3n(2m + n) - (m + 2n) He*(m,n) = He(m,n) - 4m - 8n + 6 = 3n(2m + n) - 5(m + 2n) + 6
He | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 30 | 41 | 52 | 63 | 74 | 85 | 96 | 107 | 118 | 129 | 140 | 151 | 162 |
3 | 55 | 72 | 89 | 106 | 123 | 140 | 157 | 174 | 191 | 208 | 225 | 242 | 259 |
4 | 86 | 109 | 132 | 155 | 178 | 201 | 224 | 247 | 270 | 293 | 316 | 339 | 362 |
5 | 123 | 152 | 181 | 210 | 239 | 268 | 297 | 326 | 355 | 384 | 413 | 442 | 471 |
6 | 166 | 201 | 236 | 271 | 306 | 341 | 376 | 411 | 446 | 481 | 516 | 551 | 586 |
7 | 215 | 256 | 297 | 338 | 379 | 420 | 461 | 502 | 543 | 584 | 625 | 666 | 707 |
8 | 270 | 317 | 364 | 411 | 458 | 505 | 552 | 599 | 646 | 693 | 740 | 787 | 834 |
9 | 331 | 384 | 437 | 490 | 543 | 596 | 649 | 702 | 755 | 808 | 861 | 914 | 967 |
10 | 398 | 457 | 516 | 575 | 634 | 693 | 752 | 811 | 870 | 929 | 988 | 1047 | 1106 |
11 | 471 | 536 | 601 | 666 | 731 | 796 | 861 | 926 | 991 | 1056 | 1121 | 1186 | 1251 |
12 | 550 | 621 | 692 | 763 | 834 | 905 | 976 | 1047 | 1118 | 1189 | 1260 | 1331 | 1402 |
13 | 635 | 712 | 789 | 866 | 943 | 1020 | 1097 | 1174 | 1251 | 1328 | 1405 | 1482 | 1559 |
14 | 726 | 809 | 892 | 975 | 1058 | 1141 | 1224 | 1307 | 1390 | 1473 | 1556 | 1639 | 1722 |
15 | 823 | 912 | 1001 | 1090 | 1179 | 1268 | 1357 | 1446 | 1535 | 1624 | 1713 | 1802 | 1891 |
16 | 926 | 1021 | 1116 | 1211 | 1306 | 1401 | 1496 | 1591 | 1686 | 1781 | 1876 | 1971 | 2066 |
He | m=15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 173 | 184 | 195 | 206 | 217 | 228 | 239 | 250 | 261 | 272 | 283 | 294 | 305 | 316 |
3 | 276 | 293 | 310 | 327 | 344 | 361 | 378 | 395 | 412 | 429 | 446 | 463 | 480 | 497 |
4 | 385 | 408 | 431 | 454 | 477 | 500 | 523 | 546 | 569 | 592 | 615 | 638 | 661 | 684 |
5 | 500 | 529 | 558 | 587 | 616 | 645 | 674 | 703 | 732 | 761 | 790 | 819 | 848 | 877 |
6 | 621 | 656 | 691 | 726 | 761 | 796 | 831 | 866 | 901 | 936 | 971 | 1006 | 1041 | 1076 |
He* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 12 | 19 | 26 | 33 | 40 | 47 | 54 | 61 | 68 | 75 | 82 | 89 | 96 |
3 | 29 | 42 | 55 | 68 | 81 | 94 | 107 | 120 | 133 | 146 | 159 | 172 | 185 |
4 | 52 | 71 | 90 | 109 | 128 | 147 | 166 | 185 | 204 | 223 | 242 | 261 | 280 |
5 | 81 | 106 | 131 | 156 | 181 | 206 | 231 | 256 | 281 | 306 | 331 | 356 | 381 |
6 | 116 | 147 | 178 | 209 | 240 | 271 | 302 | 333 | 364 | 395 | 426 | 457 | 488 |
7 | 157 | 194 | 231 | 268 | 305 | 342 | 379 | 416 | 453 | 490 | 527 | 564 | 601 |
8 | 204 | 247 | 290 | 333 | 376 | 419 | 462 | 505 | 548 | 591 | 634 | 677 | 720 |
9 | 257 | 306 | 355 | 404 | 453 | 502 | 551 | 600 | 649 | 698 | 747 | 796 | 845 |
10 | 316 | 371 | 426 | 481 | 536 | 591 | 646 | 701 | 756 | 811 | 866 | 921 | 976 |
11 | 381 | 442 | 503 | 564 | 625 | 686 | 747 | 808 | 869 | 930 | 991 | 1052 | 1113 |
12 | 452 | 519 | 586 | 653 | 720 | 787 | 854 | 921 | 988 | 1055 | 1122 | 1189 | 1256 |
13 | 529 | 602 | 675 | 748 | 821 | 894 | 967 | 1040 | 1113 | 1186 | 1259 | 1332 | 1405 |
14 | 612 | 691 | 770 | 849 | 928 | 1007 | 1086 | 1165 | 1244 | 1323 | 1402 | 1481 | 1560 |
15 | 701 | 786 | 871 | 956 | 1041 | 1126 | 1211 | 1296 | 1381 | 1466 | 1551 | 1636 | 1721 |
16 | 796 | 887 | 978 | 1069 | 1160 | 1251 | 1342 | 1433 | 1524 | 1615 | 1706 | 1797 | 1888 |
Semi-regular hexagons & holes (two different side lengths, alternating; e.g. truncated triangles; m > n, n > 1):
Hs(m,n) = T(m + 2(n - 1)) - 3T(n - 1) + 6(n - 1) = 3/2(m² + n² + 4mn - m - n) Hs*(m,n) = Hs(m,n) - 6m - 6n + 6 = 3/2(m² + n² + 4mn - 5m - 5n + 4)
Hs | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 48 | 69 | 93 | 120 | 150 | 183 | 219 | 258 | 300 | 345 | 393 | 444 | 498 | 555 |
3 | ... | 99 | 129 | 162 | 198 | 237 | 279 | 324 | 372 | 423 | 477 | 534 | 594 | 657 |
4 | ... | ... | 168 | 207 | 249 | 294 | 342 | 393 | 447 | 504 | 564 | 627 | 693 | 762 |
5 | ... | ... | ... | 255 | 303 | 354 | 408 | 465 | 525 | 588 | 654 | 723 | 795 | 870 |
6 | ... | ... | ... | ... | 360 | 417 | 477 | 540 | 606 | 675 | 747 | 822 | 900 | 981 |
7 | ... | ... | ... | ... | ... | 483 | 549 | 618 | 690 | 765 | 843 | 924 | 1008 | 1095 |
8 | ... | ... | ... | ... | ... | ... | 624 | 699 | 777 | 858 | 942 | 1029 | 1119 | 1212 |
9 | ... | ... | ... | ... | ... | ... | ... | 783 | 867 | 954 | 1044 | 1137 | 1233 | 1332 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 960 | 1053 | 1149 | 1248 | 1350 | 1455 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1155 | 1257 | 1362 | 1470 | 1581 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1368 | 1479 | 1593 | 1710 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1599 | 1719 | 1842 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1848 | 1977 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 2115 |
Hs* | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 24 | 39 | 57 | 78 | 102 | 129 | 159 | 192 | 228 | 267 | 309 | 354 | 402 | 453 |
3 | ... | 63 | 87 | 114 | 144 | 177 | 213 | 252 | 294 | 339 | 387 | 438 | 492 | 549 |
4 | ... | ... | 120 | 153 | 189 | 228 | 270 | 315 | 363 | 414 | 468 | 525 | 585 | 648 |
5 | ... | ... | ... | 195 | 237 | 282 | 330 | 381 | 435 | 492 | 552 | 615 | 681 | 750 |
6 | ... | ... | ... | ... | 288 | 339 | 393 | 450 | 510 | 573 | 639 | 708 | 780 | 855 |
7 | ... | ... | ... | ... | ... | 399 | 459 | 522 | 588 | 657 | 729 | 804 | 882 | 963 |
8 | ... | ... | ... | ... | ... | ... | 528 | 597 | 669 | 744 | 822 | 903 | 987 | 1074 |
9 | ... | ... | ... | ... | ... | ... | ... | 675 | 753 | 834 | 918 | 1005 | 1095 | 1188 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 840 | 927 | 1017 | 1110 | 1206 | 1305 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1023 | 1119 | 1218 | 1320 | 1425 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1224 | 1329 | 1437 | 1548 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1443 | 1557 | 1674 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1680 | 1803 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 1935 |
Chevrons & holes:
C(m,n) = P(m, 2n - 1) = 6mn - m + 4n - 3 C*(m,n) = C(m,n) - 4m - 8n + 6 = 6mn - 5m - 4n + 3
C | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 16 | 27 | 38 | 49 | 60 | 71 | 82 | 93 | 104 | 115 | 126 | 137 | 148 | 159 |
3 | 26 | 43 | 60 | 77 | 94 | 111 | 128 | 145 | 162 | 179 | 196 | 213 | 230 | 247 |
4 | 36 | 59 | 82 | 105 | 128 | 151 | 174 | 197 | 220 | 243 | 266 | 289 | 312 | 335 |
5 | 46 | 75 | 104 | 133 | 162 | 191 | 220 | 249 | 278 | 307 | 336 | 365 | 394 | 423 |
6 | 56 | 91 | 126 | 161 | 196 | 231 | 266 | 301 | 336 | 371 | 406 | 441 | 476 | 511 |
7 | 66 | 107 | 148 | 189 | 230 | 271 | 312 | 353 | 394 | 435 | 476 | 517 | 558 | 599 |
8 | 76 | 123 | 170 | 217 | 264 | 311 | 358 | 405 | 452 | 499 | 546 | 593 | 640 | 687 |
9 | 86 | 139 | 192 | 245 | 298 | 351 | 404 | 457 | 510 | 563 | 616 | 669 | 722 | 775 |
10 | 96 | 155 | 214 | 273 | 332 | 391 | 450 | 509 | 568 | 627 | 686 | 745 | 804 | 863 |
11 | 106 | 171 | 236 | 301 | 366 | 431 | 496 | 561 | 626 | 691 | 756 | 821 | 886 | 951 |
12 | 116 | 187 | 258 | 329 | 400 | 471 | 542 | 613 | 684 | 755 | 826 | 897 | 968 | 1039 |
13 | 126 | 203 | 280 | 357 | 434 | 511 | 588 | 665 | 742 | 819 | 896 | 973 | 1050 | 1127 |
14 | 136 | 219 | 302 | 385 | 468 | 551 | 634 | 717 | 800 | 883 | 966 | 1049 | 1132 | 1215 |
15 | 146 | 235 | 324 | 413 | 502 | 591 | 680 | 769 | 858 | 947 | 1036 | 1125 | 1214 | 1303 |
C* | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 2 | 9 | 16 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 |
3 | 4 | 17 | 30 | 43 | 56 | 69 | 82 | 95 | 108 | 121 | 134 | 147 | 160 | 173 |
4 | 6 | 25 | 44 | 63 | 82 | 101 | 120 | 139 | 158 | 177 | 196 | 215 | 234 | 253 |
5 | 8 | 33 | 58 | 83 | 108 | 133 | 158 | 183 | 208 | 233 | 258 | 283 | 308 | 333 |
6 | 10 | 41 | 72 | 103 | 134 | 165 | 196 | 227 | 258 | 289 | 320 | 351 | 382 | 413 |
7 | 12 | 49 | 86 | 123 | 160 | 197 | 234 | 271 | 308 | 345 | 382 | 419 | 456 | 493 |
8 | 14 | 57 | 100 | 143 | 186 | 229 | 272 | 315 | 358 | 401 | 444 | 487 | 530 | 573 |
9 | 16 | 65 | 114 | 163 | 212 | 261 | 310 | 359 | 408 | 457 | 506 | 555 | 604 | 653 |
10 | 18 | 73 | 128 | 183 | 238 | 293 | 348 | 403 | 458 | 513 | 568 | 623 | 678 | 733 |
11 | 20 | 81 | 142 | 203 | 264 | 325 | 386 | 447 | 508 | 569 | 630 | 691 | 752 | 813 |
12 | 22 | 89 | 156 | 223 | 290 | 357 | 424 | 491 | 558 | 625 | 692 | 759 | 826 | 893 |
13 | 24 | 97 | 170 | 243 | 316 | 389 | 462 | 535 | 608 | 681 | 754 | 827 | 900 | 973 |
14 | 26 | 105 | 184 | 263 | 342 | 421 | 500 | 579 | 658 | 737 | 816 | 895 | 974 | 1053 |
15 | 28 | 113 | 198 | 283 | 368 | 453 | 538 | 623 | 708 | 793 | 878 | 963 | 1048 | 1133 |
Butterflies & holes:
B(m,n) = He(m,n) - 2P(n-1,n-1) + 8(n - 1) - 2 = 6mn - 3n² - m + 10n - 6 B*(m,n) = B(m,n) - 4m - 8n + 6 = 6mn - 3n² - 5m + 2n
B | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 24 | 35 | 46 | 57 | 68 | 79 | 90 | 101 | 112 | 123 | 134 | 145 | 156 | 167 | 178 |
3 | ... | 48 | 65 | 82 | 99 | 116 | 133 | 150 | 167 | 184 | 201 | 218 | 235 | 252 | 269 |
4 | ... | ... | 78 | 101 | 124 | 147 | 170 | 193 | 216 | 239 | 262 | 285 | 308 | 331 | 354 |
5 | ... | ... | ... | 114 | 143 | 172 | 201 | 230 | 259 | 288 | 317 | 346 | 375 | 404 | 433 |
6 | ... | ... | ... | ... | 156 | 191 | 226 | 261 | 296 | 331 | 366 | 401 | 436 | 471 | 506 |
7 | ... | ... | ... | ... | ... | 204 | 245 | 286 | 327 | 368 | 409 | 450 | 491 | 532 | 573 |
8 | ... | ... | ... | ... | ... | ... | 258 | 305 | 352 | 399 | 446 | 493 | 540 | 587 | 634 |
9 | ... | ... | ... | ... | ... | ... | ... | 318 | 371 | 424 | 477 | 530 | 583 | 636 | 689 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 384 | 443 | 502 | 561 | 620 | 679 | 738 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 456 | 521 | 586 | 651 | 716 | 781 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 534 | 605 | 676 | 747 | 818 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 618 | 695 | 772 | 849 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 708 | 791 | 874 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 804 | 893 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 906 |
B* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 6 | 13 | 20 | 27 | 34 | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | 97 | 104 |
3 | ... | 18 | 31 | 44 | 57 | 70 | 83 | 96 | 109 | 122 | 135 | 148 | 161 | 174 | 187 |
4 | ... | ... | 36 | 55 | 74 | 93 | 112 | 131 | 150 | 169 | 188 | 207 | 226 | 245 | 264 |
5 | ... | ... | ... | 60 | 85 | 110 | 135 | 160 | 185 | 210 | 235 | 260 | 285 | 310 | 335 |
6 | ... | ... | ... | ... | 90 | 121 | 152 | 183 | 214 | 245 | 276 | 307 | 338 | 369 | 400 |
7 | ... | ... | ... | ... | ... | 126 | 163 | 200 | 237 | 274 | 311 | 348 | 385 | 422 | 459 |
8 | ... | ... | ... | ... | ... | ... | 168 | 211 | 254 | 297 | 340 | 383 | 426 | 469 | 512 |
9 | ... | ... | ... | ... | ... | ... | ... | 216 | 265 | 314 | 363 | 412 | 461 | 510 | 559 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 270 | 325 | 380 | 435 | 490 | 545 | 600 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 330 | 391 | 452 | 513 | 574 | 635 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 396 | 463 | 530 | 597 | 664 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 468 | 541 | 614 | 687 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 546 | 625 | 704 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 630 | 715 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 720 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit line segments in the puzzles.
16: tetratwigs (polytwigs order 4)
24: one-sided tetratwigs (polytwigs order 4)
28: polytwigs order 1-4
39: one-sided polytwigs order 1-4
51: quasi-tritwigs
58: quasi-polytwigs order 1-3
60: pentatwigs (polytwigs order 5)
Potential:
Grid saturated with the 12 pentatwigs in a non-touching configuration. "Saturated" means that all vertices are occupied with no vacancies, and since the pentatwigs are non-touching, each vertex is occupied by exactly one polyform.
Colin Brown provided an example, "rosette clustered trefoil". This configuration of pentatwigs exactly corresponds to the 12 hexiamonds. The pentatwig line segments join the centers of the hexiamonds' unit triangles, and the unoccupied hexagonal-grid line segments correspond to the borders between hexiamonds.
The pentatwig nodes (end points of the line segments) can also be transformed into hexagons, resulting in a subset of the hexahexes (120° neighbors only) on a hexagonal tiling with regular sparse holes (1/3 of all hexagons are holes). (This is equivalent to the hexiamonds with the tips of each unit triangle removed.)
See email from Colin F. Brown, 2012-04-29 & 2012-05-06.
Implementation idea: intersection points are primary columns, line segments are secondary. That's just another way of specifying polyiamonds though, exactly equivalent.
H(2) & T(3) + 3 spikes ["A simultaneous construction" in email from Colin F. Brown, 2012-05-15].
No solutions:
76: tetratwigs & pentatwigs (polytwigs order 4 & 5)
84: one-sided quasi-tritwigs
88: polytwigs order 1-5
93: one-sided quasi-polytwigs order 1-3
95: one-sided pentatwigs (polytwigs order 5)
119: one-sided polytwigs order 4 & 5 (tetratwigs & pentatwigs)
134: one-sided polytwigs order 1-5
162: hexatwigs (polytwigs order 6)
250: polytwigs order 1-6
294: one-sided hexatwigs (polytwigs order 6)
428: one-sided polytwigs order 1-6
546: heptatwigs