Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2019-10-02 |
Revision: | 657 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are cubes.
Order | Pieces | Cubes | Sum | Planar | Cubes | Sum |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 3 | 1 | 2 | 3 |
3 | 2 | 6 | 9 | 2 | 6 | 9 |
4 | 8 | 32 | 41 | 5 | 20 | 29 |
5 | 29 | 145 | 186 | 12 | 60 | 89 |
6 | 166 | 996 | 1182 | 35 | 210 | 299 |
7 | 1023 | |||||
8 | 6922 |
Cubes:
C(n) = n³
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
C(n) | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728 |
Solids (cuboids):
S(m,n,o) = mno
Triangular Prisms:
P_t(m,n) = mn(n + 1) / 2 # (m deep) ## ### ####
P_t | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 |
3 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 |
4 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
5 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 |
6 | 21 | 42 | 63 | 84 | 105 | 126 | 147 | 168 | 189 | 210 | 231 | 252 | 273 | 294 |
7 | 28 | 56 | 84 | 112 | 140 | 168 | 196 | 224 | 252 | 280 | 308 | 336 | 364 | 392 |
8 | 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | 360 | 396 | 432 | 468 | 504 |
9 | 45 | 90 | 135 | 180 | 225 | 270 | 315 | 360 | 405 | 450 | 495 | 540 | 585 | 630 |
10 | 55 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 605 | 660 | 715 | 770 |
11 | 66 | 132 | 198 | 264 | 330 | 396 | 462 | 528 | 594 | 660 | 726 | 792 | 858 | 924 |
12 | 78 | 156 | 234 | 312 | 390 | 468 | 546 | 624 | 702 | 780 | 858 | 936 | 1014 | 1092 |
13 | 91 | 182 | 273 | 364 | 455 | 546 | 637 | 728 | 819 | 910 | 1001 | 1092 | 1183 | 1274 |
14 | 105 | 210 | 315 | 420 | 525 | 630 | 735 | 840 | 945 | 1050 | 1155 | 1260 | 1365 | 1470 |
15 | 120 | 240 | 360 | 480 | 600 | 720 | 840 | 960 | 1080 | 1200 | 1320 | 1440 | 1560 | 1680 |
Double-Triangle Prisms (n == length of short side; base = 2n-1):
P_dt(m,n) = mn² # (m deep) ### #####
P_dt | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 |
3 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 | 117 |
4 | 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 |
5 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 |
6 | 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | 360 | 396 | 432 | 468 |
7 | 49 | 98 | 147 | 196 | 245 | 294 | 343 | 392 | 441 | 490 | 539 | 588 | 637 |
8 | 64 | 128 | 192 | 256 | 320 | 384 | 448 | 512 | 576 | 640 | 704 | 768 | 832 |
9 | 81 | 162 | 243 | 324 | 405 | 486 | 567 | 648 | 729 | 810 | 891 | 972 | 1053 |
10 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 |
11 | 121 | 242 | 363 | 484 | 605 | 726 | 847 | 968 | 1089 | 1210 | 1331 | 1452 | 1573 |
12 | 144 | 288 | 432 | 576 | 720 | 864 | 1008 | 1152 | 1296 | 1440 | 1584 | 1728 | 1872 |
13 | 169 | 338 | 507 | 676 | 845 | 1014 | 1183 | 1352 | 1521 | 1690 | 1859 | 2028 | 2197 |
14 | 196 | 392 | 588 | 784 | 980 | 1176 | 1372 | 1568 | 1764 | 1960 | 2156 | 2352 | 2548 |
15 | 225 | 450 | 675 | 900 | 1125 | 1350 | 1575 | 1800 | 2025 | 2250 | 2475 | 2700 | 2925 |
Diamond Prisms (A001844):
P_d(m,n) = m(4T(n) - 4n +1) = m(2n² - 2n + 1) = m(2n(n - 1) + 1) = m(n² + (n - 1)²) (== centered square numbers x m) # (m deep) ### ##### ### #
P_d | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 |
3 | 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 | 130 | 143 | 156 | 169 |
4 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 |
5 | 41 | 82 | 123 | 164 | 205 | 246 | 287 | 328 | 369 | 410 | 451 | 492 | 533 |
6 | 61 | 122 | 183 | 244 | 305 | 366 | 427 | 488 | 549 | 610 | 671 | 732 | 793 |
7 | 85 | 170 | 255 | 340 | 425 | 510 | 595 | 680 | 765 | 850 | 935 | 1020 | 1105 |
8 | 113 | 226 | 339 | 452 | 565 | 678 | 791 | 904 | 1017 | 1130 | 1243 | 1356 | 1469 |
9 | 145 | 290 | 435 | 580 | 725 | 870 | 1015 | 1160 | 1305 | 1450 | 1595 | 1740 | 1885 |
10 | 181 | 362 | 543 | 724 | 905 | 1086 | 1267 | 1448 | 1629 | 1810 | 1991 | 2172 | 2353 |
11 | 221 | 442 | 663 | 884 | 1105 | 1326 | 1547 | 1768 | 1989 | 2210 | 2431 | 2652 | 2873 |
12 | 265 | 530 | 795 | 1060 | 1325 | 1590 | 1855 | 2120 | 2385 | 2650 | 2915 | 3180 | 3445 |
13 | 313 | 626 | 939 | 1252 | 1565 | 1878 | 2191 | 2504 | 2817 | 3130 | 3443 | 3756 | 4069 |
14 | 365 | 730 | 1095 | 1460 | 1825 | 2190 | 2555 | 2920 | 3285 | 3650 | 4015 | 4380 | 4745 |
15 | 421 | 842 | 1263 | 1684 | 2105 | 2526 | 2947 | 3368 | 3789 | 4210 | 4631 | 5052 | 5473 |
Aztec Diamond Prisms (n == side length or height of quadrant):
P_a(m,n) = 2mn(n + 1) ## (m deep) #### ###### ###### #### ##
P_a | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 |
3 | 24 | 48 | 72 | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 | 288 | 312 |
4 | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 440 | 480 | 520 |
5 | 60 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | 540 | 600 | 660 | 720 | 780 |
6 | 84 | 168 | 252 | 336 | 420 | 504 | 588 | 672 | 756 | 840 | 924 | 1008 | 1092 |
7 | 112 | 224 | 336 | 448 | 560 | 672 | 784 | 896 | 1008 | 1120 | 1232 | 1344 | 1456 |
8 | 144 | 288 | 432 | 576 | 720 | 864 | 1008 | 1152 | 1296 | 1440 | 1584 | 1728 | 1872 |
9 | 180 | 360 | 540 | 720 | 900 | 1080 | 1260 | 1440 | 1620 | 1800 | 1980 | 2160 | 2340 |
10 | 220 | 440 | 660 | 880 | 1100 | 1320 | 1540 | 1760 | 1980 | 2200 | 2420 | 2640 | 2860 |
11 | 264 | 528 | 792 | 1056 | 1320 | 1584 | 1848 | 2112 | 2376 | 2640 | 2904 | 3168 | 3432 |
12 | 312 | 624 | 936 | 1248 | 1560 | 1872 | 2184 | 2496 | 2808 | 3120 | 3432 | 3744 | 4056 |
13 | 364 | 728 | 1092 | 1456 | 1820 | 2184 | 2548 | 2912 | 3276 | 3640 | 4004 | 4368 | 4732 |
14 | 420 | 840 | 1260 | 1680 | 2100 | 2520 | 2940 | 3360 | 3780 | 4200 | 4620 | 5040 | 5460 |
15 | 480 | 960 | 1440 | 1920 | 2400 | 2880 | 3360 | 3840 | 4320 | 4800 | 5280 | 5760 | 6240 |
Aztec Pyramids (3-D versions of Aztec diamonds; stacked P_a(1, n ... 1)):
Ap(n) = ## #### ## ###### #### ## ###### #### ## #### ## ##
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Ap | 4 | 16 | 40 | 80 | 140 | 224 | 336 | 480 | 660 | 880 | 1144 | 1456 |
Stepped Pyramids (stacked S(n, n, 1), S(n-2, n-2, 1), ...):
Sp(n) = n(n + 1)(n + 2) / 6 [= http://oeis.org/A000292]
Sp(5):
##### ##### ### ##### ### # ##### ### #####
Sp(6):
###### ###### #### ###### #### ## ###### #### ## ###### #### ######
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Sp | 1 | 4 | 10 | 20 | 35 | 56 | 84 | 120 | 165 | 220 | 286 | 364 |
Stacked Squares:
Ss(n) = sum(i² for i in range(n+1)) = n(n + 1)(2n + 1) / 6 ###### ##### #### ### ## # ###### ##### #### ### ## ###### ##### #### ### ###### ##### #### ###### ##### ######
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Ss | 1 | 5 | 14 | 30 | 55 | 91 | 140 | 204 | 285 | 385 | 506 | 650 |
Rectangular Pyramids (stepped roofs):
Pyr | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 |
3 | 10 | 14 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 62 | 66 | 70 |
4 | . | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 62 | 68 | 74 | 80 | 86 | 92 | 98 | 104 |
5 | . | . | 35 | 44 | 53 | 62 | 71 | 80 | 89 | 98 | 107 | 116 | 125 | 134 | 143 | 152 |
6 | . | . | . | 56 | 68 | 80 | 92 | 104 | 116 | 128 | 140 | 152 | 164 | 176 | 188 | 200 |
7 | . | . | . | . | 84 | 100 | 116 | 132 | 148 | 164 | 180 | 196 | 212 | 228 | 244 | 260 |
8 | . | . | . | . | . | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 |
9 | . | . | . | . | . | . | 165 | 190 | 215 | 240 | 265 | 290 | 315 | 340 | 365 | 390 |
10 | . | . | . | . | . | . | . | 220 | 250 | 280 | 310 | 340 | 370 | 400 | 430 | 460 |
Pyr | m=19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 |
3 | 74 | 78 | 82 | 86 | 90 | 94 | 98 | 102 | 106 | 110 | 114 | 118 | 122 | 126 | 130 |
4 | 110 | 116 | 122 | 128 | 134 | 140 | 146 | 152 | 158 | 164 | 170 | 176 | 182 | 188 | 194 |
5 | 161 | 170 | 179 | 188 | 197 | 206 | 215 | 224 | 233 | 242 | 251 | 260 | 269 | 278 | 287 |
6 | 212 | 224 | 236 | 248 | 260 | 272 | 284 | 296 | 308 | 320 | 332 | 344 | 356 | 368 | 380 |
7 | 276 | 292 | 308 | 324 | 340 | 356 | 372 | 388 | 404 | 420 | 436 | 452 | 468 | 484 | 500 |
8 | 340 | 360 | 380 | 400 | 420 | 440 | 460 | 480 | 500 | 520 | 540 | 560 | 580 | 600 | 620 |
9 | 415 | 440 | 465 | 490 | 515 | 540 | 565 | 590 | 615 | 640 | 665 | 690 | 715 | 740 | 765 |
10 | 490 | 520 | 550 | 580 | 610 | 640 | 670 | 700 | 730 | 760 | 790 | 820 | 850 | 880 | 910 |
Triangular Pyramids (parity imbalance likely). Pyt(6):
###### ##### #### ### ## # ##### #### ### ## # #### ### ## # ### ## # ## # #
Diamond Pyramids (parity imbalance likely). Pyd(4):
# ### # ##### ### # ####### ##### ### # ##### ### # ### # #
n | Pyt | Pyd |
---|---|---|
1 | 1 | 1 |
2 | 4 | 6 |
3 | 10 | 19 |
4 | 20 | 44 |
5 | 35 | 85 |
6 | 56 | 146 |
7 | 84 | 231 |
8 | 120 | 344 |
9 | 165 | 489 |
10 | 220 | 670 |
11 | 286 | 891 |
12 | 364 | 1156 |
13 | 455 | 1469 |
14 | 560 | 1834 |
15 | 680 | 2255 |
16 | 816 | 2736 |
17 | 969 | 3281 |
18 | 1140 | 3894 |
19 | 1330 | 4579 |
20 | 1540 | 5340 |
Open boxes:
B_o(m, n, o) = mn + 2(m + n - 2)(o - 1)
o=2
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | 72 | 77 | 82 | 87 | 92 |
4 | . | 28 | 34 | 40 | 46 | 52 | 58 | 64 | 70 | 76 | 82 | 88 | 94 | 100 | 106 | 112 |
5 | . | . | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | 97 | 104 | 111 | 118 | 125 | 132 |
6 | . | . | . | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 |
7 | . | . | . | . | 73 | 82 | 91 | 100 | 109 | 118 | 127 | 136 | 145 | 154 | 163 | 172 |
8 | . | . | . | . | . | 92 | 102 | 112 | 122 | 132 | 142 | 152 | 162 | 172 | 182 | 192 |
9 | . | . | . | . | . | . | 113 | 124 | 135 | 146 | 157 | 168 | 179 | 190 | 201 | 212 |
10 | . | . | . | . | . | . | . | 136 | 148 | 160 | 172 | 184 | 196 | 208 | 220 | 232 |
11 | . | . | . | . | . | . | . | . | 161 | 174 | 187 | 200 | 213 | 226 | 239 | 252 |
12 | . | . | . | . | . | . | . | . | . | 188 | 202 | 216 | 230 | 244 | 258 | 272 |
13 | . | . | . | . | . | . | . | . | . | . | 217 | 232 | 247 | 262 | 277 | 292 |
14 | . | . | . | . | . | . | . | . | . | . | . | 248 | 264 | 280 | 296 | 312 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 281 | 298 | 315 | 332 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 316 | 334 | 352 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 353 | 372 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 392 |
o=3
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 25 | 32 | 39 | 46 | 53 | 60 | 67 | 74 | 81 | 88 | 95 | 102 | 109 | 116 | 123 | 130 |
4 | . | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 |
5 | . | . | 57 | 66 | 75 | 84 | 93 | 102 | 111 | 120 | 129 | 138 | 147 | 156 | 165 | 174 |
6 | . | . | . | 76 | 86 | 96 | 106 | 116 | 126 | 136 | 146 | 156 | 166 | 176 | 186 | 196 |
7 | . | . | . | . | 97 | 108 | 119 | 130 | 141 | 152 | 163 | 174 | 185 | 196 | 207 | 218 |
8 | . | . | . | . | . | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 |
9 | . | . | . | . | . | . | 145 | 158 | 171 | 184 | 197 | 210 | 223 | 236 | 249 | 262 |
10 | . | . | . | . | . | . | . | 172 | 186 | 200 | 214 | 228 | 242 | 256 | 270 | 284 |
11 | . | . | . | . | . | . | . | . | 201 | 216 | 231 | 246 | 261 | 276 | 291 | 306 |
12 | . | . | . | . | . | . | . | . | . | 232 | 248 | 264 | 280 | 296 | 312 | 328 |
13 | . | . | . | . | . | . | . | . | . | . | 265 | 282 | 299 | 316 | 333 | 350 |
14 | . | . | . | . | . | . | . | . | . | . | . | 300 | 318 | 336 | 354 | 372 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 337 | 356 | 375 | 394 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 376 | 396 | 416 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 417 | 438 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 460 |
o=4
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 33 | 42 | 51 | 60 | 69 | 78 | 87 | 96 | 105 | 114 | 123 | 132 | 141 | 150 | 159 | 168 |
4 | . | 52 | 62 | 72 | 82 | 92 | 102 | 112 | 122 | 132 | 142 | 152 | 162 | 172 | 182 | 192 |
5 | . | . | 73 | 84 | 95 | 106 | 117 | 128 | 139 | 150 | 161 | 172 | 183 | 194 | 205 | 216 |
6 | . | . | . | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 |
7 | . | . | . | . | 121 | 134 | 147 | 160 | 173 | 186 | 199 | 212 | 225 | 238 | 251 | 264 |
8 | . | . | . | . | . | 148 | 162 | 176 | 190 | 204 | 218 | 232 | 246 | 260 | 274 | 288 |
9 | . | . | . | . | . | . | 177 | 192 | 207 | 222 | 237 | 252 | 267 | 282 | 297 | 312 |
10 | . | . | . | . | . | . | . | 208 | 224 | 240 | 256 | 272 | 288 | 304 | 320 | 336 |
11 | . | . | . | . | . | . | . | . | 241 | 258 | 275 | 292 | 309 | 326 | 343 | 360 |
12 | . | . | . | . | . | . | . | . | . | 276 | 294 | 312 | 330 | 348 | 366 | 384 |
13 | . | . | . | . | . | . | . | . | . | . | 313 | 332 | 351 | 370 | 389 | 408 |
14 | . | . | . | . | . | . | . | . | . | . | . | 352 | 372 | 392 | 412 | 432 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 393 | 414 | 435 | 456 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 436 | 458 | 480 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 481 | 504 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 528 |
o=5
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 41 | 52 | 63 | 74 | 85 | 96 | 107 | 118 | 129 | 140 | 151 | 162 | 173 | 184 | 195 |
4 | . | 64 | 76 | 88 | 100 | 112 | 124 | 136 | 148 | 160 | 172 | 184 | 196 | 208 | 220 |
5 | . | . | 89 | 102 | 115 | 128 | 141 | 154 | 167 | 180 | 193 | 206 | 219 | 232 | 245 |
6 | . | . | . | 116 | 130 | 144 | 158 | 172 | 186 | 200 | 214 | 228 | 242 | 256 | 270 |
7 | . | . | . | . | 145 | 160 | 175 | 190 | 205 | 220 | 235 | 250 | 265 | 280 | 295 |
8 | . | . | . | . | . | 176 | 192 | 208 | 224 | 240 | 256 | 272 | 288 | 304 | 320 |
9 | . | . | . | . | . | . | 209 | 226 | 243 | 260 | 277 | 294 | 311 | 328 | 345 |
10 | . | . | . | . | . | . | . | 244 | 262 | 280 | 298 | 316 | 334 | 352 | 370 |
11 | . | . | . | . | . | . | . | . | 281 | 300 | 319 | 338 | 357 | 376 | 395 |
12 | . | . | . | . | . | . | . | . | . | 320 | 340 | 360 | 380 | 400 | 420 |
13 | . | . | . | . | . | . | . | . | . | . | 361 | 382 | 403 | 424 | 445 |
14 | . | . | . | . | . | . | . | . | . | . | . | 404 | 426 | 448 | 470 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 449 | 472 | 495 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 496 | 520 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 545 |
o=6
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 49 | 62 | 75 | 88 | 101 | 114 | 127 | 140 | 153 | 166 | 179 | 192 | 205 | 218 | 231 |
4 | . | 76 | 90 | 104 | 118 | 132 | 146 | 160 | 174 | 188 | 202 | 216 | 230 | 244 | 258 |
5 | . | . | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 | 225 | 240 | 255 | 270 | 285 |
6 | . | . | . | 136 | 152 | 168 | 184 | 200 | 216 | 232 | 248 | 264 | 280 | 296 | 312 |
7 | . | . | . | . | 169 | 186 | 203 | 220 | 237 | 254 | 271 | 288 | 305 | 322 | 339 |
8 | . | . | . | . | . | 204 | 222 | 240 | 258 | 276 | 294 | 312 | 330 | 348 | 366 |
9 | . | . | . | . | . | . | 241 | 260 | 279 | 298 | 317 | 336 | 355 | 374 | 393 |
10 | . | . | . | . | . | . | . | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 |
11 | . | . | . | . | . | . | . | . | 321 | 342 | 363 | 384 | 405 | 426 | 447 |
12 | . | . | . | . | . | . | . | . | . | 364 | 386 | 408 | 430 | 452 | 474 |
13 | . | . | . | . | . | . | . | . | . | . | 409 | 432 | 455 | 478 | 501 |
14 | . | . | . | . | . | . | . | . | . | . | . | 456 | 480 | 504 | 528 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 505 | 530 | 555 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 556 | 582 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 609 |
o=7
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 57 | 72 | 87 | 102 | 117 | 132 | 147 | 162 | 177 | 192 | 207 | 222 | 237 | 252 | 267 |
4 | . | 88 | 104 | 120 | 136 | 152 | 168 | 184 | 200 | 216 | 232 | 248 | 264 | 280 | 296 |
5 | . | . | 121 | 138 | 155 | 172 | 189 | 206 | 223 | 240 | 257 | 274 | 291 | 308 | 325 |
6 | . | . | . | 156 | 174 | 192 | 210 | 228 | 246 | 264 | 282 | 300 | 318 | 336 | 354 |
7 | . | . | . | . | 193 | 212 | 231 | 250 | 269 | 288 | 307 | 326 | 345 | 364 | 383 |
8 | . | . | . | . | . | 232 | 252 | 272 | 292 | 312 | 332 | 352 | 372 | 392 | 412 |
9 | . | . | . | . | . | . | 273 | 294 | 315 | 336 | 357 | 378 | 399 | 420 | 441 |
10 | . | . | . | . | . | . | . | 316 | 338 | 360 | 382 | 404 | 426 | 448 | 470 |
11 | . | . | . | . | . | . | . | . | 361 | 384 | 407 | 430 | 453 | 476 | 499 |
12 | . | . | . | . | . | . | . | . | . | 408 | 432 | 456 | 480 | 504 | 528 |
13 | . | . | . | . | . | . | . | . | . | . | 457 | 482 | 507 | 532 | 557 |
14 | . | . | . | . | . | . | . | . | . | . | . | 508 | 534 | 560 | 586 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 561 | 588 | 615 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 616 | 644 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 673 |
o=8
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 65 | 82 | 99 | 116 | 133 | 150 | 167 | 184 | 201 | 218 | 235 | 252 | 269 | 286 | 303 |
4 | . | 100 | 118 | 136 | 154 | 172 | 190 | 208 | 226 | 244 | 262 | 280 | 298 | 316 | 334 |
5 | . | . | 137 | 156 | 175 | 194 | 213 | 232 | 251 | 270 | 289 | 308 | 327 | 346 | 365 |
6 | . | . | . | 176 | 196 | 216 | 236 | 256 | 276 | 296 | 316 | 336 | 356 | 376 | 396 |
7 | . | . | . | . | 217 | 238 | 259 | 280 | 301 | 322 | 343 | 364 | 385 | 406 | 427 |
8 | . | . | . | . | . | 260 | 282 | 304 | 326 | 348 | 370 | 392 | 414 | 436 | 458 |
9 | . | . | . | . | . | . | 305 | 328 | 351 | 374 | 397 | 420 | 443 | 466 | 489 |
10 | . | . | . | . | . | . | . | 352 | 376 | 400 | 424 | 448 | 472 | 496 | 520 |
11 | . | . | . | . | . | . | . | . | 401 | 426 | 451 | 476 | 501 | 526 | 551 |
12 | . | . | . | . | . | . | . | . | . | 452 | 478 | 504 | 530 | 556 | 582 |
13 | . | . | . | . | . | . | . | . | . | . | 505 | 532 | 559 | 586 | 613 |
14 | . | . | . | . | . | . | . | . | . | . | . | 560 | 588 | 616 | 644 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 617 | 646 | 675 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 676 | 706 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 737 |
o=9
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 73 | 92 | 111 | 130 | 149 | 168 | 187 | 206 | 225 | 244 | 263 | 282 | 301 | 320 | 339 |
4 | . | 112 | 132 | 152 | 172 | 192 | 212 | 232 | 252 | 272 | 292 | 312 | 332 | 352 | 372 |
5 | . | . | 153 | 174 | 195 | 216 | 237 | 258 | 279 | 300 | 321 | 342 | 363 | 384 | 405 |
6 | . | . | . | 196 | 218 | 240 | 262 | 284 | 306 | 328 | 350 | 372 | 394 | 416 | 438 |
7 | . | . | . | . | 241 | 264 | 287 | 310 | 333 | 356 | 379 | 402 | 425 | 448 | 471 |
8 | . | . | . | . | . | 288 | 312 | 336 | 360 | 384 | 408 | 432 | 456 | 480 | 504 |
9 | . | . | . | . | . | . | 337 | 362 | 387 | 412 | 437 | 462 | 487 | 512 | 537 |
10 | . | . | . | . | . | . | . | 388 | 414 | 440 | 466 | 492 | 518 | 544 | 570 |
11 | . | . | . | . | . | . | . | . | 441 | 468 | 495 | 522 | 549 | 576 | 603 |
12 | . | . | . | . | . | . | . | . | . | 496 | 524 | 552 | 580 | 608 | 636 |
13 | . | . | . | . | . | . | . | . | . | . | 553 | 582 | 611 | 640 | 669 |
14 | . | . | . | . | . | . | . | . | . | . | . | 612 | 642 | 672 | 702 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 673 | 704 | 735 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 736 | 768 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 801 |
o=10
B_o | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 81 | 102 | 123 | 144 | 165 | 186 | 207 | 228 | 249 | 270 | 291 | 312 | 333 | 354 | 375 |
4 | . | 124 | 146 | 168 | 190 | 212 | 234 | 256 | 278 | 300 | 322 | 344 | 366 | 388 | 410 |
5 | . | . | 169 | 192 | 215 | 238 | 261 | 284 | 307 | 330 | 353 | 376 | 399 | 422 | 445 |
6 | . | . | . | 216 | 240 | 264 | 288 | 312 | 336 | 360 | 384 | 408 | 432 | 456 | 480 |
7 | . | . | . | . | 265 | 290 | 315 | 340 | 365 | 390 | 415 | 440 | 465 | 490 | 515 |
8 | . | . | . | . | . | 316 | 342 | 368 | 394 | 420 | 446 | 472 | 498 | 524 | 550 |
9 | . | . | . | . | . | . | 369 | 396 | 423 | 450 | 477 | 504 | 531 | 558 | 585 |
10 | . | . | . | . | . | . | . | 424 | 452 | 480 | 508 | 536 | 564 | 592 | 620 |
11 | . | . | . | . | . | . | . | . | 481 | 510 | 539 | 568 | 597 | 626 | 655 |
12 | . | . | . | . | . | . | . | . | . | 540 | 570 | 600 | 630 | 660 | 690 |
13 | . | . | . | . | . | . | . | . | . | . | 601 | 632 | 663 | 694 | 725 |
14 | . | . | . | . | . | . | . | . | . | . | . | 664 | 696 | 728 | 760 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 729 | 762 | 795 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 796 | 830 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 865 |
Ring walls:
Rw(m,n,o) = 2o(m + n - 2)
o=2
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 |
4 | . | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 |
5 | . | . | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 | 84 |
6 | . | . | . | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 | 84 | 88 |
7 | . | . | . | . | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92 |
8 | . | . | . | . | . | 56 | 60 | 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92 | 96 |
9 | . | . | . | . | . | . | 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92 | 96 | 100 |
10 | . | . | . | . | . | . | . | 72 | 76 | 80 | 84 | 88 | 92 | 96 | 100 | 104 |
11 | . | . | . | . | . | . | . | . | 80 | 84 | 88 | 92 | 96 | 100 | 104 | 108 |
12 | . | . | . | . | . | . | . | . | . | 88 | 92 | 96 | 100 | 104 | 108 | 112 |
13 | . | . | . | . | . | . | . | . | . | . | 96 | 100 | 104 | 108 | 112 | 116 |
14 | . | . | . | . | . | . | . | . | . | . | . | 104 | 108 | 112 | 116 | 120 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 112 | 116 | 120 | 124 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 120 | 124 | 128 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 128 | 132 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 136 |
o=3
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 |
4 | . | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 |
5 | . | . | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 | 126 |
6 | . | . | . | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 | 126 | 132 |
7 | . | . | . | . | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 | 126 | 132 | 138 |
8 | . | . | . | . | . | 84 | 90 | 96 | 102 | 108 | 114 | 120 | 126 | 132 | 138 | 144 |
9 | . | . | . | . | . | . | 96 | 102 | 108 | 114 | 120 | 126 | 132 | 138 | 144 | 150 |
10 | . | . | . | . | . | . | . | 108 | 114 | 120 | 126 | 132 | 138 | 144 | 150 | 156 |
11 | . | . | . | . | . | . | . | . | 120 | 126 | 132 | 138 | 144 | 150 | 156 | 162 |
12 | . | . | . | . | . | . | . | . | . | 132 | 138 | 144 | 150 | 156 | 162 | 168 |
13 | . | . | . | . | . | . | . | . | . | . | 144 | 150 | 156 | 162 | 168 | 174 |
14 | . | . | . | . | . | . | . | . | . | . | . | 156 | 162 | 168 | 174 | 180 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 168 | 174 | 180 | 186 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 180 | 186 | 192 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 192 | 198 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 204 |
o=4
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 |
4 | . | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 | 160 |
5 | . | . | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 | 160 | 168 |
6 | . | . | . | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 | 160 | 168 | 176 |
7 | . | . | . | . | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152 | 160 | 168 | 176 | 184 |
8 | . | . | . | . | . | 112 | 120 | 128 | 136 | 144 | 152 | 160 | 168 | 176 | 184 | 192 |
9 | . | . | . | . | . | . | 128 | 136 | 144 | 152 | 160 | 168 | 176 | 184 | 192 | 200 |
10 | . | . | . | . | . | . | . | 144 | 152 | 160 | 168 | 176 | 184 | 192 | 200 | 208 |
11 | . | . | . | . | . | . | . | . | 160 | 168 | 176 | 184 | 192 | 200 | 208 | 216 |
12 | . | . | . | . | . | . | . | . | . | 176 | 184 | 192 | 200 | 208 | 216 | 224 |
13 | . | . | . | . | . | . | . | . | . | . | 192 | 200 | 208 | 216 | 224 | 232 |
14 | . | . | . | . | . | . | . | . | . | . | . | 208 | 216 | 224 | 232 | 240 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 224 | 232 | 240 | 248 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 240 | 248 | 256 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 256 | 264 |
18 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 272 |
o=5
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
4 | . | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
5 | . | . | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
6 | . | . | . | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 |
7 | . | . | . | . | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 | 220 |
8 | . | . | . | . | . | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 |
9 | . | . | . | . | . | . | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 |
10 | . | . | . | . | . | . | . | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 |
11 | . | . | . | . | . | . | . | . | 200 | 210 | 220 | 230 | 240 | 250 | 260 |
12 | . | . | . | . | . | . | . | . | . | 220 | 230 | 240 | 250 | 260 | 270 |
13 | . | . | . | . | . | . | . | . | . | . | 240 | 250 | 260 | 270 | 280 |
14 | . | . | . | . | . | . | . | . | . | . | . | 260 | 270 | 280 | 290 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 280 | 290 | 300 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 300 | 310 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 320 |
o=6
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 |
4 | . | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 |
5 | . | . | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 |
6 | . | . | . | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 | 252 |
7 | . | . | . | . | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 | 252 | 264 |
8 | . | . | . | . | . | 168 | 180 | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 |
9 | . | . | . | . | . | . | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 | 288 |
10 | . | . | . | . | . | . | . | 216 | 228 | 240 | 252 | 264 | 276 | 288 | 300 |
11 | . | . | . | . | . | . | . | . | 240 | 252 | 264 | 276 | 288 | 300 | 312 |
12 | . | . | . | . | . | . | . | . | . | 264 | 276 | 288 | 300 | 312 | 324 |
13 | . | . | . | . | . | . | . | . | . | . | 288 | 300 | 312 | 324 | 336 |
14 | . | . | . | . | . | . | . | . | . | . | . | 312 | 324 | 336 | 348 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 336 | 348 | 360 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 360 | 372 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 384 |
o=7
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 56 | 70 | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 | 224 | 238 | 252 |
4 | . | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 | 224 | 238 | 252 | 266 |
5 | . | . | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 | 224 | 238 | 252 | 266 | 280 |
6 | . | . | . | 140 | 154 | 168 | 182 | 196 | 210 | 224 | 238 | 252 | 266 | 280 | 294 |
7 | . | . | . | . | 168 | 182 | 196 | 210 | 224 | 238 | 252 | 266 | 280 | 294 | 308 |
8 | . | . | . | . | . | 196 | 210 | 224 | 238 | 252 | 266 | 280 | 294 | 308 | 322 |
9 | . | . | . | . | . | . | 224 | 238 | 252 | 266 | 280 | 294 | 308 | 322 | 336 |
10 | . | . | . | . | . | . | . | 252 | 266 | 280 | 294 | 308 | 322 | 336 | 350 |
11 | . | . | . | . | . | . | . | . | 280 | 294 | 308 | 322 | 336 | 350 | 364 |
12 | . | . | . | . | . | . | . | . | . | 308 | 322 | 336 | 350 | 364 | 378 |
13 | . | . | . | . | . | . | . | . | . | . | 336 | 350 | 364 | 378 | 392 |
14 | . | . | . | . | . | . | . | . | . | . | . | 364 | 378 | 392 | 406 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 392 | 406 | 420 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 420 | 434 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 448 |
o=8
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | 256 | 272 | 288 |
4 | . | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | 256 | 272 | 288 | 304 |
5 | . | . | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | 256 | 272 | 288 | 304 | 320 |
6 | . | . | . | 160 | 176 | 192 | 208 | 224 | 240 | 256 | 272 | 288 | 304 | 320 | 336 |
7 | . | . | . | . | 192 | 208 | 224 | 240 | 256 | 272 | 288 | 304 | 320 | 336 | 352 |
8 | . | . | . | . | . | 224 | 240 | 256 | 272 | 288 | 304 | 320 | 336 | 352 | 368 |
9 | . | . | . | . | . | . | 256 | 272 | 288 | 304 | 320 | 336 | 352 | 368 | 384 |
10 | . | . | . | . | . | . | . | 288 | 304 | 320 | 336 | 352 | 368 | 384 | 400 |
11 | . | . | . | . | . | . | . | . | 320 | 336 | 352 | 368 | 384 | 400 | 416 |
12 | . | . | . | . | . | . | . | . | . | 352 | 368 | 384 | 400 | 416 | 432 |
13 | . | . | . | . | . | . | . | . | . | . | 384 | 400 | 416 | 432 | 448 |
14 | . | . | . | . | . | . | . | . | . | . | . | 416 | 432 | 448 | 464 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 448 | 464 | 480 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 480 | 496 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 512 |
o=9
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 72 | 90 | 108 | 126 | 144 | 162 | 180 | 198 | 216 | 234 | 252 | 270 | 288 | 306 | 324 |
4 | . | 108 | 126 | 144 | 162 | 180 | 198 | 216 | 234 | 252 | 270 | 288 | 306 | 324 | 342 |
5 | . | . | 144 | 162 | 180 | 198 | 216 | 234 | 252 | 270 | 288 | 306 | 324 | 342 | 360 |
6 | . | . | . | 180 | 198 | 216 | 234 | 252 | 270 | 288 | 306 | 324 | 342 | 360 | 378 |
7 | . | . | . | . | 216 | 234 | 252 | 270 | 288 | 306 | 324 | 342 | 360 | 378 | 396 |
8 | . | . | . | . | . | 252 | 270 | 288 | 306 | 324 | 342 | 360 | 378 | 396 | 414 |
9 | . | . | . | . | . | . | 288 | 306 | 324 | 342 | 360 | 378 | 396 | 414 | 432 |
10 | . | . | . | . | . | . | . | 324 | 342 | 360 | 378 | 396 | 414 | 432 | 450 |
11 | . | . | . | . | . | . | . | . | 360 | 378 | 396 | 414 | 432 | 450 | 468 |
12 | . | . | . | . | . | . | . | . | . | 396 | 414 | 432 | 450 | 468 | 486 |
13 | . | . | . | . | . | . | . | . | . | . | 432 | 450 | 468 | 486 | 504 |
14 | . | . | . | . | . | . | . | . | . | . | . | 468 | 486 | 504 | 522 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 504 | 522 | 540 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 540 | 558 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 576 |
o=10
Rw | m=3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=3 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 |
4 | . | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 |
5 | . | . | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 |
6 | . | . | . | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 |
7 | . | . | . | . | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 | 440 |
8 | . | . | . | . | . | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 | 440 | 460 |
9 | . | . | . | . | . | . | 320 | 340 | 360 | 380 | 400 | 420 | 440 | 460 | 480 |
10 | . | . | . | . | . | . | . | 360 | 380 | 400 | 420 | 440 | 460 | 480 | 500 |
11 | . | . | . | . | . | . | . | . | 400 | 420 | 440 | 460 | 480 | 500 | 520 |
12 | . | . | . | . | . | . | . | . | . | 440 | 460 | 480 | 500 | 520 | 540 |
13 | . | . | . | . | . | . | . | . | . | . | 480 | 500 | 520 | 540 | 560 |
14 | . | . | . | . | . | . | . | . | . | . | . | 520 | 540 | 560 | 580 |
15 | . | . | . | . | . | . | . | . | . | . | . | . | 560 | 580 | 600 |
16 | . | . | . | . | . | . | . | . | . | . | . | . | . | 600 | 620 |
17 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 640 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit cubes in the puzzles.
27: Soma cubes
32: Tetracubes
40: Polycubes of order 2 - 4
41: Polycubes of order 1 - 4
60: Solid pentominoes
125: 25 pentacubes. E.g. the "stubby" or compact pentacubes, where no dimension is longer than 3, i.e. the pentacubes that individually fit into a 3×3×3 cube: all pentacubes except the I5, L5, N5, & Y5.
140: Non-convex pentacubes
145: Pentacubes
150: Pentacubes Plus (= Kadon's Super Deluxe Quintillions)
177: Tetracubes + Pentacubes
182: Tetracubes + Pentacubes Plus
185: Polycubes of order 2 - 5
186: Polycubes of order 1 - 5
190: Polycubes of order 2 - 5 (Pentacubes Plus)
191: Polycubes of order 1 - 5 (Pentacubes Plus)
210: solid hexominoes
35 × 6 = 210 = 2 × 3 × 5 × 7
Since 2 is a prime factor, there will always be an even dimension. Therefore in a 3-D checkerboard colouring, the number of black and white cubes will be identical, 105 each. But the hexominoes have even black & white colouring. Therefore due to a parity imbalance no simple block solids are possible.
See http://www.recmath.com/PolyPages/PolyPages/index.htm?Polycubes.html
216: solid hexominoes + 1 duplicate == 6³ == Kadon "Sextillions"
216: Polycubes of order 1 - 5 plus 5 hexacubes
[DONE, except for refinements under "Ideas"]
Polycubes: 3³ + 4³ + 5³ = 6³ (27 + 64 + 125 = 216) (first solution to diophantine 3.1.3 equation)
The only three consecutive integers whose cubes sum to a cube are given by the Diophantine equation
3³ + 4³ + 5³ = 6³
Examples:
Find a set of polycubes that can form each term of 3³ + 4³ + 5³ (3 cubes simultaneously) and 6³ (separately, with all pieces combined).
The polycubes don't align perfectly with any of these totals, so there are multiple possibilities:
All polycubes O(1)...O(5) = 186 unit cubes. Add 5 hexacubes to make 216 unit cubes.
How to choose the 5 hexacubes?
[DONE] Choose the most symmetrical/interesting/diverse? E.g. 5 of Kadon's {A, O, X3, N2b3, T4b4, Q14, Q4b1, B, fat A}.
Favourite 5: {Ba6/B, O06/O, Tp6/T4b4, Nt6/N2b3, Qe6/Q4b1}
Choose the pieces with the fewest number of aspects?
Choose the most compact pieces? {O, fat A, B, Q14, A}
Can't choose the "I" piece, because it's 6 cubes long and won't fit in 5³.
All polycubes O(1)...O(3) = 9 unit cubes; use 3 sets to build the 3³ = 27 unit cubes.
All tetracubes = 32 cubes; use 2 sets to build the 4³ = 64 unit cubes.
All pentacubes = 145 cubes; exclude 4 pentacubes (which 4 though?) to build the 5³ = 125 unit cubes.
Ideas:
996: Hexacubes
1141: Hexacubes + pentacubes
1182: Polycubes of order 1 - 6
Pentacubes checkerboard parity imbalance (abs(black - white)):
F I L N P T U V W X Y Z L1 L2 L3 L4 J1 J2 J4 N1 N2 S1 S2 T1 T2 V1 V2 Q A 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1
Minimum imbalance: 1
Maximum imbalance: 33
For Pentacubes Plus or Non-Convex Pentacubes, minimum imbalance = 0.
Pentacubes Plus maximum imbalance: 34
Non-Convex Pentacubes maximum imbalance: 32
Polycubes (order 1 - 4) checkerboard parity imbalance (abs(black - white)):
M D I3 V3 I4 L4 T4 S4 O4 A4 B4 P4 1 0 1 1 0 0 2 0 0 0 0 2
Maximum imbalance: 7