Notes on Polysticks

Author: David Goodger <goodger@python.org>
Date: 2015-02-24
Revision: 600
Web site:http://puzzler.sourceforge.net/
Copyright: © 1998-2015 by David J. Goodger
License:GPL 2
images/puzzler.png

Contents

Polyform Counts

Units are unit line segments on the square grid.

The polysticks (fully-connected):

Order Name Free Units Sum One-sided Units Sum
1 monostick 1 1 1 1 1 1
2 distick 2 4 5 2 4 5
3 tristick 5 15 20 7 21 26
4 tetrastick 16 64 84 25 100 126
5 pentastick 55 275 359 99 495 621
6* hexastick 222     416    
7* heptastick 950     1854    

"*" above means that pieces with enclosed holes exist.

The quasi-polysticks (includes disconnected forms that have gaps of maximum length 1):

Order Name Free Units Sum One-sided Units Sum
1 quasi-monostick 1 1 1 1 1 1
2 quasi-distick 6 12 13 8 16 17
3 quasi-tristick 46 138 151 80 240 257
4 quasi-tetrastick 603     1151    
5 quasi-pentastick 8878     17573    

Shapes

Holes (denoted by a "*" in the function name) consist of internal segments only, no circumference segments.

Grid size definitions are OK (instead of side length), as long as it's clearly noted.

Rectangular MxN grid (bordered):

R(m,n) = m * (n - 1) + n * (m - 1)
R m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=2 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
3 ... 12 17 22 27 32 37 42 47 52 57 62 67 72 77
4 ... ... 24 31 38 45 52 59 66 73 80 87 94 101 108
5 ... ... ... 40 49 58 67 76 85 94 103 112 121 130 139
6 ... ... ... ... 60 71 82 93 104 115 126 137 148 159 170
7 ... ... ... ... ... 84 97 110 123 136 149 162 175 188 201
8 ... ... ... ... ... ... 112 127 142 157 172 187 202 217 232
9 ... ... ... ... ... ... ... 144 161 178 195 212 229 246 263
10 ... ... ... ... ... ... ... ... 180 199 218 237 256 275 294
11 ... ... ... ... ... ... ... ... ... 220 241 262 283 304 325
12 ... ... ... ... ... ... ... ... ... ... 264 287 310 333 356
13 ... ... ... ... ... ... ... ... ... ... ... 312 337 362 387
14 ... ... ... ... ... ... ... ... ... ... ... ... 364 391 418
15 ... ... ... ... ... ... ... ... ... ... ... ... ... 420 449
16 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 480

Rectangular MxN grid (unbordered):

R*(m,n) = (m - 2) * (n - 1) + (m - 1) * (n - 2)
R* m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 ... 4 7 10 13 16 19 22 25 28 31 34 37 40 43
4 ... ... 12 17 22 27 32 37 42 47 52 57 62 67 72
5 ... ... ... 24 31 38 45 52 59 66 73 80 87 94 101
6 ... ... ... ... 40 49 58 67 76 85 94 103 112 121 130
7 ... ... ... ... ... 60 71 82 93 104 115 126 137 148 159
8 ... ... ... ... ... ... 84 97 110 123 136 149 162 175 188
9 ... ... ... ... ... ... ... 112 127 142 157 172 187 202 217
10 ... ... ... ... ... ... ... ... 144 161 178 195 212 229 246
11 ... ... ... ... ... ... ... ... ... 180 199 218 237 256 275
12 ... ... ... ... ... ... ... ... ... ... 220 241 262 283 304
13 ... ... ... ... ... ... ... ... ... ... ... 264 287 310 333
14 ... ... ... ... ... ... ... ... ... ... ... ... 312 337 362
15 ... ... ... ... ... ... ... ... ... ... ... ... ... 364 391
16 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 420

MxN diamond lattice:

D(m,n) = m * n * 4
D m=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
2 ... 16 24 32 40 48 56 64 72 80 88 96 104 112 120
3 ... ... 36 48 60 72 84 96 108 120 132 144 156 168 180
4 ... ... ... 64 80 96 112 128 144 160 176 192 208 224 240
5 ... ... ... ... 100 120 140 160 180 200 220 240 260 280 300
6 ... ... ... ... ... 144 168 192 216 240 264 288 312 336 360
7 ... ... ... ... ... ... 196 224 252 280 308 336 364 392 420
8 ... ... ... ... ... ... ... 256 288 320 352 384 416 448 480
9 ... ... ... ... ... ... ... ... 324 360 396 432 468 504 540
10 ... ... ... ... ... ... ... ... ... 400 440 480 520 560 600
11 ... ... ... ... ... ... ... ... ... ... 484 528 572 616 660
12 ... ... ... ... ... ... ... ... ... ... ... 576 624 672 720
13 ... ... ... ... ... ... ... ... ... ... ... ... 676 728 780
14 ... ... ... ... ... ... ... ... ... ... ... ... ... 784 840
15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 900

Triangles (n == height):

T(n) = n(n + 3)

Double Triangles (n == height):

DT(n) = 2n² +3n - 1

Aztec Diamonds (n == side length or height of quadrant; _A134582):

A(n) = 4(n + 1)² - 4
     = 4n(n + 2)
n T DT A
1 4 4 12
2 10 13 32
3 18 26 60
4 28 43 96
5 40 64 140
6 54 89 192
7 70 118 252
8 88 151 320
9 108 188 396
10 130 229 480
11 154 274 572
12 180 323 672
13 208 376 780
14 238 433 896
15 270 494 1020

Trapezoid (m = base / jagged hypotenuse, n=smooth side length):

Tr(m,n) = T(m) - T(m - n) + 2(m - n)
Tr m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=2 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94
3 ... 18 26 34 42 50 58 66 74 82 90 98 106 114 122
4 ... ... 28 38 48 58 68 78 88 98 108 118 128 138 148
5 ... ... ... 40 52 64 76 88 100 112 124 136 148 160 172
6 ... ... ... ... 54 68 82 96 110 124 138 152 166 180 194
7 ... ... ... ... ... 70 86 102 118 134 150 166 182 198 214
8 ... ... ... ... ... ... 88 106 124 142 160 178 196 214 232
9 ... ... ... ... ... ... ... 108 128 148 168 188 208 228 248
10 ... ... ... ... ... ... ... ... 130 152 174 196 218 240 262
11 ... ... ... ... ... ... ... ... ... 154 178 202 226 250 274
12 ... ... ... ... ... ... ... ... ... ... 180 206 232 258 284
13 ... ... ... ... ... ... ... ... ... ... ... 208 236 264 292
14 ... ... ... ... ... ... ... ... ... ... ... ... 238 268 298
15 ... ... ... ... ... ... ... ... ... ... ... ... ... 270 302
16 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 304

Parallelogram (m=smooth base length, n=jagged side length):

P(m,n) = R(m,n) + 2(n - 1)

Parity imbalance = (n - 1).

P m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=2 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83
3 19 26 33 40 47 54 61 68 75 82 89 96 103 110 117
4 25 34 43 52 61 70 79 88 97 106 115 124 133 142 151
5 31 42 53 64 75 86 97 108 119 130 141 152 163 174 185
6 37 50 63 76 89 102 115 128 141 154 167 180 193 206 219
7 43 58 73 88 103 118 133 148 163 178 193 208 223 238 253
8 49 66 83 100 117 134 151 168 185 202 219 236 253 270 287
9 55 74 93 112 131 150 169 188 207 226 245 264 283 302 321
10 61 82 103 124 145 166 187 208 229 250 271 292 313 334 355
11 67 90 113 136 159 182 205 228 251 274 297 320 343 366 389
12 73 98 123 148 173 198 223 248 273 298 323 348 373 398 423
13 79 106 133 160 187 214 241 268 295 322 349 376 403 430 457
14 85 114 143 172 201 230 259 288 317 346 375 404 433 462 491
15 91 122 153 184 215 246 277 308 339 370 401 432 463 494 525
16 97 130 163 196 229 262 295 328 361 394 427 460 493 526 559

Potential Puzzles

Puzzles not otherwise noted below have not been implemented or solved.

Initial numbers are the counts of unit line segments in the puzzles.

15: tristicks

20: polysticks of order 1 to 3

21: one-sided tristicks

26: one-sided polysticks of order 1 to 3

40: one-sided welded tetrasticks

49: seven-segment digits

60: 15/16 tetrasticks

64: tetrasticks (must have parity imbalance = 2, 6, 10, or 14)

84: polysticks of order 1 to 4

100: one-sided tetrasticks

126: one-sided polysticks of order 1 to 4

Misc