Author: | David Goodger <goodger@python.org> |
---|---|
Date: | 2015-02-24 |
Revision: | 600 |
Web site: | http://puzzler.sourceforge.net/ |
Copyright: | © 1998-2015 by David J. Goodger |
License: | GPL 2 |
Contents
Units are unit line segments on the square grid.
The polysticks (fully-connected):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | monostick | 1 | 1 | 1 | 1 | 1 | 1 |
2 | distick | 2 | 4 | 5 | 2 | 4 | 5 |
3 | tristick | 5 | 15 | 20 | 7 | 21 | 26 |
4 | tetrastick | 16 | 64 | 84 | 25 | 100 | 126 |
5 | pentastick | 55 | 275 | 359 | 99 | 495 | 621 |
6* | hexastick | 222 | 416 | ||||
7* | heptastick | 950 | 1854 |
"*" above means that pieces with enclosed holes exist.
The quasi-polysticks (includes disconnected forms that have gaps of maximum length 1):
Order | Name | Free | Units | Sum | One-sided | Units | Sum |
---|---|---|---|---|---|---|---|
1 | quasi-monostick | 1 | 1 | 1 | 1 | 1 | 1 |
2 | quasi-distick | 6 | 12 | 13 | 8 | 16 | 17 |
3 | quasi-tristick | 46 | 138 | 151 | 80 | 240 | 257 |
4 | quasi-tetrastick | 603 | 1151 | ||||
5 | quasi-pentastick | 8878 | 17573 |
Holes (denoted by a "*" in the function name) consist of internal segments only, no circumference segments.
Grid size definitions are OK (instead of side length), as long as it's clearly noted.
Rectangular MxN grid (bordered):
R(m,n) = m * (n - 1) + n * (m - 1)
R | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 4 | 7 | 10 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | 34 | 37 | 40 | 43 | 46 |
3 | ... | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | 72 | 77 |
4 | ... | ... | 24 | 31 | 38 | 45 | 52 | 59 | 66 | 73 | 80 | 87 | 94 | 101 | 108 |
5 | ... | ... | ... | 40 | 49 | 58 | 67 | 76 | 85 | 94 | 103 | 112 | 121 | 130 | 139 |
6 | ... | ... | ... | ... | 60 | 71 | 82 | 93 | 104 | 115 | 126 | 137 | 148 | 159 | 170 |
7 | ... | ... | ... | ... | ... | 84 | 97 | 110 | 123 | 136 | 149 | 162 | 175 | 188 | 201 |
8 | ... | ... | ... | ... | ... | ... | 112 | 127 | 142 | 157 | 172 | 187 | 202 | 217 | 232 |
9 | ... | ... | ... | ... | ... | ... | ... | 144 | 161 | 178 | 195 | 212 | 229 | 246 | 263 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 180 | 199 | 218 | 237 | 256 | 275 | 294 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 220 | 241 | 262 | 283 | 304 | 325 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 264 | 287 | 310 | 333 | 356 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 312 | 337 | 362 | 387 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 364 | 391 | 418 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 420 | 449 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 480 |
Rectangular MxN grid (unbordered):
R*(m,n) = (m - 2) * (n - 1) + (m - 1) * (n - 2)
R* | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
3 | ... | 4 | 7 | 10 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | 34 | 37 | 40 | 43 |
4 | ... | ... | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | 72 |
5 | ... | ... | ... | 24 | 31 | 38 | 45 | 52 | 59 | 66 | 73 | 80 | 87 | 94 | 101 |
6 | ... | ... | ... | ... | 40 | 49 | 58 | 67 | 76 | 85 | 94 | 103 | 112 | 121 | 130 |
7 | ... | ... | ... | ... | ... | 60 | 71 | 82 | 93 | 104 | 115 | 126 | 137 | 148 | 159 |
8 | ... | ... | ... | ... | ... | ... | 84 | 97 | 110 | 123 | 136 | 149 | 162 | 175 | 188 |
9 | ... | ... | ... | ... | ... | ... | ... | 112 | 127 | 142 | 157 | 172 | 187 | 202 | 217 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 144 | 161 | 178 | 195 | 212 | 229 | 246 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 180 | 199 | 218 | 237 | 256 | 275 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 220 | 241 | 262 | 283 | 304 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 264 | 287 | 310 | 333 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 312 | 337 | 362 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 364 | 391 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 420 |
MxN diamond lattice:
D(m,n) = m * n * 4
D | m=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
2 | ... | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
3 | ... | ... | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 180 |
4 | ... | ... | ... | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 |
5 | ... | ... | ... | ... | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 |
6 | ... | ... | ... | ... | ... | 144 | 168 | 192 | 216 | 240 | 264 | 288 | 312 | 336 | 360 |
7 | ... | ... | ... | ... | ... | ... | 196 | 224 | 252 | 280 | 308 | 336 | 364 | 392 | 420 |
8 | ... | ... | ... | ... | ... | ... | ... | 256 | 288 | 320 | 352 | 384 | 416 | 448 | 480 |
9 | ... | ... | ... | ... | ... | ... | ... | ... | 324 | 360 | 396 | 432 | 468 | 504 | 540 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 400 | 440 | 480 | 520 | 560 | 600 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 484 | 528 | 572 | 616 | 660 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 576 | 624 | 672 | 720 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 676 | 728 | 780 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 784 | 840 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 900 |
Triangles (n == height):
T(n) = n(n + 3)
Double Triangles (n == height):
DT(n) = 2n² +3n - 1
Aztec Diamonds (n == side length or height of quadrant; _A134582):
A(n) = 4(n + 1)² - 4 = 4n(n + 2)
n | T | DT | A |
---|---|---|---|
1 | 4 | 4 | 12 |
2 | 10 | 13 | 32 |
3 | 18 | 26 | 60 |
4 | 28 | 43 | 96 |
5 | 40 | 64 | 140 |
6 | 54 | 89 | 192 |
7 | 70 | 118 | 252 |
8 | 88 | 151 | 320 |
9 | 108 | 188 | 396 |
10 | 130 | 229 | 480 |
11 | 154 | 274 | 572 |
12 | 180 | 323 | 672 |
13 | 208 | 376 | 780 |
14 | 238 | 433 | 896 |
15 | 270 | 494 | 1020 |
Trapezoid (m = base / jagged hypotenuse, n=smooth side length):
Tr(m,n) = T(m) - T(m - n) + 2(m - n)
Tr | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 10 | 16 | 22 | 28 | 34 | 40 | 46 | 52 | 58 | 64 | 70 | 76 | 82 | 88 | 94 |
3 | ... | 18 | 26 | 34 | 42 | 50 | 58 | 66 | 74 | 82 | 90 | 98 | 106 | 114 | 122 |
4 | ... | ... | 28 | 38 | 48 | 58 | 68 | 78 | 88 | 98 | 108 | 118 | 128 | 138 | 148 |
5 | ... | ... | ... | 40 | 52 | 64 | 76 | 88 | 100 | 112 | 124 | 136 | 148 | 160 | 172 |
6 | ... | ... | ... | ... | 54 | 68 | 82 | 96 | 110 | 124 | 138 | 152 | 166 | 180 | 194 |
7 | ... | ... | ... | ... | ... | 70 | 86 | 102 | 118 | 134 | 150 | 166 | 182 | 198 | 214 |
8 | ... | ... | ... | ... | ... | ... | 88 | 106 | 124 | 142 | 160 | 178 | 196 | 214 | 232 |
9 | ... | ... | ... | ... | ... | ... | ... | 108 | 128 | 148 | 168 | 188 | 208 | 228 | 248 |
10 | ... | ... | ... | ... | ... | ... | ... | ... | 130 | 152 | 174 | 196 | 218 | 240 | 262 |
11 | ... | ... | ... | ... | ... | ... | ... | ... | ... | 154 | 178 | 202 | 226 | 250 | 274 |
12 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 180 | 206 | 232 | 258 | 284 |
13 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 208 | 236 | 264 | 292 |
14 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 238 | 268 | 298 |
15 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 270 | 302 |
16 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 304 |
Parallelogram (m=smooth base length, n=jagged side length):
P(m,n) = R(m,n) + 2(n - 1)
Parity imbalance = (n - 1).
P | m=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=2 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 | 73 | 78 | 83 |
3 | 19 | 26 | 33 | 40 | 47 | 54 | 61 | 68 | 75 | 82 | 89 | 96 | 103 | 110 | 117 |
4 | 25 | 34 | 43 | 52 | 61 | 70 | 79 | 88 | 97 | 106 | 115 | 124 | 133 | 142 | 151 |
5 | 31 | 42 | 53 | 64 | 75 | 86 | 97 | 108 | 119 | 130 | 141 | 152 | 163 | 174 | 185 |
6 | 37 | 50 | 63 | 76 | 89 | 102 | 115 | 128 | 141 | 154 | 167 | 180 | 193 | 206 | 219 |
7 | 43 | 58 | 73 | 88 | 103 | 118 | 133 | 148 | 163 | 178 | 193 | 208 | 223 | 238 | 253 |
8 | 49 | 66 | 83 | 100 | 117 | 134 | 151 | 168 | 185 | 202 | 219 | 236 | 253 | 270 | 287 |
9 | 55 | 74 | 93 | 112 | 131 | 150 | 169 | 188 | 207 | 226 | 245 | 264 | 283 | 302 | 321 |
10 | 61 | 82 | 103 | 124 | 145 | 166 | 187 | 208 | 229 | 250 | 271 | 292 | 313 | 334 | 355 |
11 | 67 | 90 | 113 | 136 | 159 | 182 | 205 | 228 | 251 | 274 | 297 | 320 | 343 | 366 | 389 |
12 | 73 | 98 | 123 | 148 | 173 | 198 | 223 | 248 | 273 | 298 | 323 | 348 | 373 | 398 | 423 |
13 | 79 | 106 | 133 | 160 | 187 | 214 | 241 | 268 | 295 | 322 | 349 | 376 | 403 | 430 | 457 |
14 | 85 | 114 | 143 | 172 | 201 | 230 | 259 | 288 | 317 | 346 | 375 | 404 | 433 | 462 | 491 |
15 | 91 | 122 | 153 | 184 | 215 | 246 | 277 | 308 | 339 | 370 | 401 | 432 | 463 | 494 | 525 |
16 | 97 | 130 | 163 | 196 | 229 | 262 | 295 | 328 | 361 | 394 | 427 | 460 | 493 | 526 | 559 |
Puzzles not otherwise noted below have not been implemented or solved.
Initial numbers are the counts of unit line segments in the puzzles.
15: tristicks
20: polysticks of order 1 to 3
21: one-sided tristicks
26: one-sided polysticks of order 1 to 3
40: one-sided welded tetrasticks
49: seven-segment digits
60: 15/16 tetrasticks
64: tetrasticks (must have parity imbalance = 2, 6, 10, or 14)
84: polysticks of order 1 to 4
100: one-sided tetrasticks
126: one-sided polysticks of order 1 to 4
Tetrasticks horizontal/vertical parity imbalance (abs(vertical - horizontal)):
I L Y V T X U N J H F Z R W P O 4 2 2 0 0 0 0 2 2 2 0 0 0 0 0 0
Total minimum imbalance = 2, therefore for symmetrical puzzles one of HJLNY must be omitted.
For one-sided tetrasticks, only even imbalances are possible.